
D3.7: ASSURED Secure and Scalable Aggregate Network Attestation – version 2

© 2020-2023 ASSURED Consortium Page 1 of 4

Grant Agreement No.: 952697
Call: H2020-SU-ICT-2018-2020
Topic: SU-ICT-02-2020
Type of action: RIA

D3.7 ASSURED SECURE AND SCALABLE
AGGREGATE NETWORK ATTESTATION – VERSION 2

Revision: v.1.0

Work package WP 3

Task Task 3.5

Deliverable lead TUDA

Version 1.00

Editors Richard Mitev (TUDA), Philip Rieger (TUDA), Nada El Kassem (SURREY)

Reviewers Liquin Chen (SURREY), Edlira Dushku (DTU)

Abstract

Deliverable D3.7 provides the design and implementation details on the final version of the
ASSURED Swarm Attestation scheme, which was initially presented in D3.6. The purpose of
the scheme is to enable the simultaneous attestation of multiple devices (leveraging the single-
Prover CFA or CIV enablers, as presented in D3.3), in a manner that is more computationally
efficient than attesting to the correctness of each device individually. The solution provided by
ASSURED offers a wide variety of features, such as the provision of privacy-preserving
attestation, including both identity privacy (i.e., the protection of the identity of the Prover
devices), and attestation evidence privacy (to ensure that the Prover devices divulge no
information about their configuration state, which could be used by a malicious party to carry
out implementation disclosure attacks). In addition, the designed scheme provides traceability
and linkability features, which enable the identification of a compromised device in case of a
failed attestation, as well as the revocation of that device, based on the use of pseudonyms.
An additional important update presented in this deliverable entails the consideration of
dynamic network topologies, which considers the mobility of the swarm devices. Finally,
experimental results are provided in order to evaluate the performance of the designed
scheme, as well as a security analysis of the protocol. To the best of our knowledge, this is
the first instance of such a scheme that can reconcile swarm attestation and safety-critical
operations in simple IoT devices.

Keywords Trusted Computing, Swarm Attestation, Attestation Evidence Privacy, Identity Privacy,
Dynamic Network Topology

D3.7: ASSURED Secure and Scalable Aggregate Network Attestation – version 2

© 2020-2023 ASSURED Consortium Page 2 of 4

Document Revision History

Version Date Description of change List of contributors

v0.1 18.01.2023
Table of Contents provided, summarizing the
components and functionalities of ASSURED to be
covered by the deliverable

Richard Mitev (TUDA), Philip Rieger
(TUDA)

v0.15 17.02.2023

Definition of the system model, security and privacy
requirements, and building blocks of the Swarm
Attestation scheme. Details on trust assumptions and
trust modelling to be used as part of security proof.
(Chapter 3)

Edlira Dushku, Heini Bergsson Debes,
Benjamin Larsen, Nicola Dragoni (DTU)
Richard Mitev, Philip Rieger, Marco
Chilese, David Koisser (TUDA)
Nada El Kassem (SURREY)
Thanassis Giannetsos, Dimitris Karras,
Stefanos Vasileiadis, Alexandros
Sampanis (UBITECH)
Ilias Aliferis (UNIS)

v0.2 03.03.2023

Details on the considered dynamic network topology
and threat model to be addressed by the Swarm
Attestation scheme.
(Chapter 3)

Thanassis Giannetsos, Dimitris Karras
(UBITECH)
Edlira Dushku, Heini Bergsson Debes,
Benjamin Larsen, Nicola Dragoni (DTU)
Liqun Chen, Nada El Kassem
(SURREY)

v0.3 19.03.2023

Details on the building blocks of the Swarm
Attestation scheme, namely aggregated signatures,
DAA, ring signatures, and property-based attestation.
(Chapter 3)

Thanassis Giannetsos, Dimitris Karras
(UBITECH)
Edlira Dushku, Heini Bergsson Debes,
Benjamin Larsen, Nicola Dragoni (DTU)
Liqun Chen, Nada El Kassem
(SURREY)

v0.4 31.03.2023

Description and formalization of the Setup phase of
the Swarm Attestation scheme, including Edge and
IoT device enrollment.
(Chapter 4)

Edlira Dushku, Heini Bergsson Debes,
Benjamin Larsen, Nicola Dragoni (DTU)
Nada El Kassem (SURREY)

v0.45 13.04.2023
Description and formalization of the Attestation and
Verification phase of the Swarm Attestation scheme.
(Chapter 4)

Edlira Dushku, Heini Bergsson Debes,
Benjamin Larsen, Nicola Dragoni (DTU)
Nada El Kassem (SURREY)

v0.5 18.04.2023 Initial review of the Swarm Attestation protocol,
including building blocks and algorithms.

Liquin Chen (SURREY), Thanassis
Giannetsos (UBITECH)

v0.55 27.04.2023

Clarifications to the descriptions of the building
blocks, updates on the algorithms in order to clarify
attestation and verification process, and updates on
the revocation process.

Thanassis Giannetsos, Dimitris Karras
(UBITECH)
Edlira Dushku, Heini Bergsson Debes,
Benjamin Larsen, Nicola Dragoni (DTU)

v0.6 10.05.2023

Security analysis of the Swarm Attestation scheme,
including security proof and protection against the
considered threat model.
(Chapter 4)

Nada El Kassem, Liqun Chen
(SURREY)

v0.7 17.05.2023

Implementation details, experimental results, and
performance evaluation of the Swarm Attestation
scheme.
(Chapter 5)

Thanassis Giannetsos, Dimitris Karras,
Stefanos Vasileiadis, Alexandros
Sampanis (UBITECH)
Ahmad Atali, Meni Onrebach (MLNX)

v0.8 24.05.2023

Summary of the features and updates based on final
version of the ASSURED Swarm Attestation scheme,
including high-level overview and building blocks.
(Chapter 2)

Thanassis Giannetsos, Dimitris Karras
(UBITECH)
Edlira Dushku, Heini Bergsson Debes,
Benjamin Larsen, Nicola Dragoni (DTU)

v0.9 26.05.2023 Finalization of the introduction and conclusions
section of the deliverable (Chapters 1 and 6)

Thanassis Giannetsos, Dimitris Karras
(UBITECH)

v0.95 02.06.2023 Review of the entire deliverable Liquin Chen (SURREY), Thanassis
Giannetsos (UBITECH)

v1.0 16.06.2023 Update of the deliverable based on the review
comments

Thanassis Giannetsos, Dimitris Karras
(UBITECH)

D3.7: ASSURED Secure and Scalable Aggregate Network Attestation – version 2

© 2020-2023 ASSURED Consortium Page 3 of 4

Editors

Richard Mitev (TUDA), Philip Rieger (TUDA), Nada El Kssem (SURREY)

Contributors (ordered according to beneficiary numbers)

Edlira Dushku, Heini Bergsson Debes, Benjamin Larsen (DTU)

Richard Mitev, Philip Rieger, Marco Chilese, David Koisser (TUDA)

Liqun Chen, Nada El Kassem (SURREY)

Ahmad Atali, Meni Onrebach (MLNX/NVIDIA)

Thanassis Giannetsos, Dimitris Karras, Stefanos Vasileiadis, Alexandros Sampanis
(UBITECH)

Ilias Aliferis (UNIS)

D3.7: ASSURED Secure and Scalable Aggregate Network Attestation – version 2

© 2020-2023 ASSURED Consortium Page 4 of 4

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
"Future Proofing of ICT Trust Chains: Sustainable Operational Assurance and Verification
Remote Guards for Systems-of-Systems Security and Privacy" (ASSURED) project’s
consortium under EC grant agreement 952697 and do not necessarily reflect the views of the
European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

COPYRIGHT NOTICE

© 2020 - 2023 ASSURED Consortium

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web ✔

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to ASSURED project and Commission Services

* R: Document, report (excluding the periodic and final reports)

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Executive Summary

The number and variety of special-purpose computing devices is increasing drastically, in multi-
ple (safety-critical) application domains, that leverage such cyber-physical systems in “smart” set-
tings; such as smart factories, critical infrastructures, automotive (e.g., Cooperative, Connected
and Automated Mobility (CCAM) [34,42]). As society becomes increasingly accustomed to being
surrounded by, and dependent on, such devices, their security and safety becomes extremely
important. Furthermore, since such systems usually support real-time applications with strict
timing requirements [13], integrating new security and assurance controls is a challenging
task that needs to be handled gracefully so that such a consolidation does not influence
the device’s runtime behavior.

Compounding this issue, ASSURED introduced a set of novel attestation enablers [24] (imple-
mented as a SW/HW co-design) allowing both the remote and local verification of the con-
figuration and behavioral correctness of a device. These controls targeted the software and
hardware (firmware) layers and covering all phases of a device’s execution; from the trusted boot
and integrity measurement of a CPS, enabling the generation of static, boot-time or load-time
evidence of the system’s components correct configuration (Configuration Integrity Verifica-
tion (CIV) [30,43]), to the runtime behavioral attestation of those safety-critical components of
a system providing strong guarantees on the correctness of the control- and information-flow
properties (Control-Flow Attestation [50]), thus, enhancing the performance and scalability
when composing secure systems from potentially insecure components. These security services
were also enriched with zero-knowledge capabilities [27–29] for been able to allow a Verifier
(Vrf) device to establish a dynamic root-of-trust in the Prover (Prv) without the need of disclosing
the actual state of the Prv, thus, weakening the overall trust assumptions that most of the existing
attestation schemes suffer from that hinders their applicability to services with inherent zero trust
guarantees for all participating actors and stakeholders. This also provided the necessary means
for the design of an Enhanced Direct Anonymous Attestation (DAA) [44] protocol towards the
provision of privacy-preserving platform authentication capabilities while also enabling device-
controlled anonymity and unlinkability when exchanging safety-critical data with other actors in
the overall service graph chain. Finally, an additional Jury-based attestation mechanism was
also provided for allowing the handling of disagreements (during the execution of an attestation
process) between the Prv and the Vrf : In case of a dispute on the verifiability of evidence, pro-
vided by the Prv , other constituent devices will be triggered to help by providing an additional
layer of verification on the correctness/honesty of the initial Prv and Vrf devices so that they can
identify the culprit (dishonest) node.

While all these attestation primitives achieve high efficiency (as detailed in Deliverable D6.3 [23]
through an extensive set of experiments), showcasing that this type of SW/HW co-design ap-
proach followed is particularly promising for low-end embedded devices, they target single-Prover
and single-Verifier attestation tasks. This is the first step, in the overarching vision of ASSURED,
towards the creation of “communities of trust” where (dynamic) trust relationships can be as-
sessed and established between entities, starting from bi-lateral interactions between two single
system components and continuing as such systems get connected to ever larger entities. But
how can we transfer such security claims on the correctness of the properties of single systems
to hierarchical composition of systems (“Systems-of-Systems”)?. In this context, ASSURED has
proposed a new variant of Swarm Attestation (introduced in Deliverable D3.6 [22]) that enables
a root Verifier to check the sanity of a set (swarm) of devices in a privacy-preserving man-
ner; concealing the identities of the Prv devices, and only in the case of a possible compromise

ASSURED D3.7 PU Page I

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

detection does the scheme allows for tracing back a failed attestation to the swarm device that
caused the failure (instead of isolating the entire swarm).

The ASSURED Swarm Attestation (SA) scheme aims to fulfill the security and privacy require-
ments set forth by the Next-Generation Smart Connectivity SoSes towards the evolution of such
safety-critical SoS from local, stand-alone systems into safe and secure solutions distributed over
the continuum from cyber-physical end devices, to edge servers and cloud facilities. Specifi-
cally, we first established the required security and trustworthiness properties that need to be
achieved, as well as the novel provided feature of Prv identity privacy through the integration
of the ASSURED Enhanced Traceable Direct Anonymous Attestation (DAA) scheme. This
enables us to both protect the system from malicious parties, and to protect devices from
untrusted verifying entities. As aforementioned, the purpose of this scheme is to enable unlink-
able attestation, so that no successful attestation result can be linked back to the source device,
and no potentially system identifiable information can be leaked.

However, what is still lacking is the safeguarding of attestation evidence privacy so as to be able
to avoid implementation disclosure attacks. As was also described in D3.6 [22], existing swarm
attestation schemes lack of privacy, during the execution of all underlying attestation tasks (e.g.,
CIV, CFA, etc.) as Prover devices must comprehensively disclose program execution or con-
figuration details, which is unattractive when such information should remain a secret. Enabling
Verifiers to have full knowledge of a Prover’s memory layout and configuration profile (e.g.,
type of OS loaded) renders them prone to privacy breaches and implementation disclosure
attacks: “honest-but-curious” verifying entities can exfiltrate sensitive information on the device’s
configuration, safety-critical functionalities, etc., which can be used to harm its general availabil-
ity. In addition, exposing all execution details for verification contradicts the Zero Trust principle
(assumed in ASSURED [19]) that dictates that no initial trust can be assumed between enti-
ties. Revealing information on running processes of a system can enable adversaries to benefit
from such knowledge towards mounting run-time attacks against the program’s codebase. Com-
pounding this issue, what is needed, is the ability to be able to verify the correct execution and/or
configuration profile of a device (in the swarm) without, however, been able to pinpoint what is the
actual device profile that is running.

This is the focus of this deliverable: To present the second and final version of the ASSURED
Swarm Attestation capabilities supporting both identity and attestation evidence privacy.
To achieve this milestone, we have enhanced the previous SA variant with the use of ring signa-
tures (to work in tandem with the crypto primitives of Enhanced DAA and aggregate signatures
already employed) so that the root Verifier can attest to the correctness of the entire swarm not
only without the need of each device disclosing any details on their running state but also consid-
ering the difference in the configuration profile of each comprising device. In other words, the root
Vrf can ascertain that each device (of the target swarm) is at a correct state, as depicted by a
set of (hash) “golden states” characterized as trusted by the application owner, but without know-
ing the identity of each device nor the state that is associated to each device. This is achieved
by protecting the identity of the signing IoT device with hiding its public key, through the use of
anonymized DAA credentials. At the same time, the properties of controlled-linkability and ac-
countability (resulting into the credential revocation of failed-to-attest devices) are still accounted
for in this new SA variant.

In order to verify the correctness and security of the ASSURED SA scheme, we also provide a
rigorous mathematical security analysis and proof, based on the use of the Universal Compos-
ability (UC) model. This guarantees that the security of the SA protocol is preserved under an
internal composition operator, but also provides stronger guarantees for maintaining the security

ASSURED D3.7 PU Page II

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

of the scheme in any context, even in the presence of an unbounded number of attackers and
independent of the capabilities of the attacker. The UC framework achieves the formal verification
of the security proofs under these strong assumptions, thus serving towards the overall vision of
ASSURED for scalable and lightweight crypto protocols that can be abstracted and transferred to
different types of application domains with varying security, privacy, and trust requirements.

ASSURED D3.7 PU Page III

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Contents

List of Figures VI

List of Tables VII

1 Introduction 1
1.1 Scope and Purpose . 2
1.2 Relation to other WPs and Deliverables . 3
1.3 Deliverable Structure . 4

2 Additional Features Complementing the ASSURED Swarm Attestation Scheme 5
2.1 High-level Overview of the Building Blocks and Workflow 7
2.2 Features and Updates on the ASSURED Swarm Attestation Scheme 9

3 System/Threat Model & Listing of Security and Privacy Requirements 12
3.1 Adversarial Model . 15
3.2 The Key Binding Problem . 18
3.3 Security & Privacy Requirements and Trust Assumptions 19

3.3.1 Security & Privacy Requirements . 19
3.3.2 Trust Modeling . 22

4 Scalable Swarm Attestation Protocol with Enhanced Privacy Capabilities 23
4.1 Preliminaries - Dynamic SA Scheme Building Blocks 25

4.1.1 Aggregated Signatures . 25
4.1.2 Direct Anonymous Attestation . 27
4.1.3 Ring Signatures . 28

4.1.3.1 Ring Signature Scheme . 29
4.1.4 Property-Based Attestation (PBA) . 30

4.2 Towards Dynamic Topologies with Device Mobility 31
4.2.1 High-level Dynamic Swarm Attestation with Evidence Privacy 31

4.3 Architectural Details and Protocols of ASSURED Dynamic Swarm Attestation . . 34
4.3.1 Setup Phase . 35

4.3.1.1 Edge Device Enrollment . 35
4.3.1.2 Generating the Tracing Keys by the Opener 36
4.3.1.3 IoT Device Enrollment . 36

4.3.2 Attestation Phase . 37
4.3.2.1 IoT Device Signature . 37
4.3.2.2 Edge Device Signature & Traceability 37

4.3.3 Verification Phase . 38
4.3.3.1 Link . 38

ASSURED D3.7 PU Page IV

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

4.3.3.2 Tracing/Opening . 38
4.3.3.3 Revocation . 39

5 Security Analysis of the ASSURED Swarm Attestation Protocol 40
5.1 Swarm Attestation Protocol Security Analysis . 40

5.1.1 Methodology . 40
5.1.2 Ideal Functionality Algorithms for the Dynamic Swarm Attestation with Evi-

dence Privacy . 40
5.1.3 Universal Composability Security Model 41

5.2 Swarm Attestation Protocol Security Proof . 45

6 Implementation and Performance Evaluation of ASSURED SA 50
6.1 Instantiation in the context of the Use Cases . 50
6.2 Evaluation Methodology . 51
6.3 Evaluation of Online Operations . 52

6.3.1 Signature Construction . 52
6.3.2 Edge Device Aggregation and Verification 52
6.3.3 DAA Signature and Aggregation . 54
6.3.4 Traceability . 55

6.4 Evaluation of Offline Operations . 56

7 Conclusions 57

ASSURED D3.7 PU Page V

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

List of Figures

1.1 Relation of D3.7 with other WPs and Deliverables 3

3.1 Overview of the Swarm Topology and Signature. 13
3.2 Dynamic network topology. 14

4.1 Property-based Attestation Framework enhanced with ring signatures 28
4.2 Property-Based Attestation (PBA) Sequence of Actions 29
4.3 Dynamic Swarm Attestation setup, where kij is a shared secret between the ith

IoT device and the jth Edge . 30
4.4 Dynamic Swarm topology . 32

6.1 Aggregation time of a various number of IoT signatures. 54

ASSURED D3.7 PU Page VI

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

List of Tables

2.1 Novel features of ASSURED Swarm Attestation. 7
2.2 Implementation status of ASSURED Swarm Attestation enabler. 11

3.1 Security Requirements of the ASSURED Swarm Attestation Scheme. 21
3.2 Privacy Requirements of the ASSURED Swarm Attestation Scheme. 21

4.2 Notation Summary . 26

6.1 Timing results of hashing in (ms) . 52
6.2 Timing results for IoT signatures in (ms) . 53
6.3 Timing results for DAA signatures in (ms) . 53
6.4 DAA VERIFY Operation Timing . 54
6.5 DAA SIGN Operation Timing . 54
6.6 DAA JOIN Operation Timing . 55
6.7 DAA Key Creation Timing . 55

ASSURED D3.7 PU Page VII

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Chapter 1

Introduction

The exponential proliferation of low-cost embedded devices and Internet-of-Things (IoT) gad-
gets has increased their usage in Next-Generation Smart Connectivity “Systems-of-Systems”
(SoS) [44], motivated by the need to cooperatively execute safety-critical functions. How-
ever, this approach also turns the devices into attractive cyber-attack targets. Therefore, in the
face of an increasing attack landscape, it is imperative to ensure their correct and safe oper-
ation because, by their very nature, these software-based components may not always be
in trusted custody.

Towards this direction and to ensure the correctness of the operational state of a device, Remote
attestation (RA) [4,32] has been proposed in order to detect unexpected modifications in the con-
figuration of loaded binaries and check software integrity. However, most proposed attestation
schemes have assumed the existence of a single Prover and a single Verifier, which intro-
duces efficiency and scalability issues in the context of large-scale systems comprising
multiple Edge and IoT devices. In this context, swarm attestation [5] has been proposed, which
enables the root Verifier (V) to simultaneously check the sanity of a set (swarm) of devices.

Several swarm attestation schemes have been proposed in the literature. Most are based on
the use of a spanning tree [5, 14] to aggregate the attestation results, where swarm devices are
attested by neighboring devices based on a tree format with the Verifier as a root. The broad-
casting aggregate pattern addresses this issue, by having each device broadcast its response to
the attestation challenge to its neighbors [41]. However, there has been very limited focus on
privacy issues of the devices [3] both as t pertains to identity privacy but also attestation
evidence privacy. Two schemes are proposed in [14], one of which keeps a list of the failed
devices and the other does not. In [37], compromised devices and services are identified, and
in [32], it is detected whether a device has been infected by a compromised device.

One big challenge, in this context, is the need for a “trusted” Verifier to conduct the attestation
process and assert the integrity of all swarm IoT devices. This contradicts the emerging Zero
Trust principle with the need of “Never Trust, Always Verify” [49] and complicates scalabil-
ity and efficiency due to Verifier complexity. Such an obsolete assumption renders existing
swarm attestation schemes prone to privacy breaches and implementation disclosure at-
tacks under honest-but-curious adversaries. Consider, for instance, the case of automatic
collision avoidance of a vehicle where the brake Electronic Control Unit (ECU) and radar sensors
are potential targets that need to be checked for their proper functionality in order to assert that
the system will work as intended. In the case of a third-party Verifier running at the Multi-Access
Edge Computing Layer (MEC), as envisioned by ETSI [49] (more details about the MEC can be
found in Chapter 3), sharing all configuration and internal execution details of such safety-
critical components do not only raise significant privacy concerns on the identity of the

ASSURED D3.7 PU Page 1 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

vehicle driver (by linking specific ECU IDs to the overall vehicle profile) but is also not
allowed due to contractual constraints.

This sets the challenge ahead: Can we identify a secure and efficient attestation scheme that
can correctly make valid statements about the integrity of both single devices and a swarm of
devices in a privacy-preserving but accountable manner? This means that the designed scheme
should be able to provide verifiable evidence on the correctness of a swarm by concealing
the identities of the devices and the attestation evidence based on which the verification
process is to be excuted, and only in the case of a possible compromise detection should it
allow for tracing back a failed attestation to the swarm device that caused the failure (instead of
isolating the entire swarm).

This is the focus of this Deliverable: Building on top of the first variant of a novel Swarm Attesta-
tion protocol that was presented in D3.6 [22], achieving identity privacy through the use of our
Enhanced Direct Anonymous Attestation (DAA) protocol, we now proceed with the necessary en-
hancements for also enabling attestation evidence privacy through the use of ring signatures.
ASSURED is the first of its kind to merge the use of such advanced crypto primitives in a way
that results in an efficient protocol capable of been instantiated in resource-constrained embed-
ded devices. The endmost goal is not to simply reduce the communication overhead compared
to the naive approach of applying many time single-Prover attestation tasks, but also enable an
additional layer of attestation intelligence and governance that can allow Verifier devices to
cope with the intrinsic characteristics of the service graph topologies that usually pervade these
types of “Systems-of-Systems”: (i) Such systems usually demonstrate a high level of mobility
resulting in continuous changes occuring to the construction of the routing tree since they will
need to establish new “parent relationships” with other nodes for relaying its communicated data,
and (ii) The need to establish federated trust between the devices in the swarm so as to man-
age the hierarchical topology that usually characterize such systems where the device at each
layer can act as the Verifier for its children or a tree-based structure where only the root node can
act the root Verifier.

This type of features is one of the motivating factors for the enhanced version of the ASSURED
Swarm Attestation mechanism that can support such dynamic network topologies, requiring
efficient and continuous authentication capabilities (between the IoT device and the Edge
device acting as the parent node in this particular time frame), and flexible key management
for enabling the verification of (signed) attestation reports in a hierarchical topology: From
intermediate nodes (acting as Verifiers) that might not have established a trust relationship with
the Prover and need to query another trusted entity for the correctness of the presented crypto
material or offload the verification process (thus, enabling a verification-as-a-service model).

1.1 Scope and Purpose

The main purpose of this deliverable is to present the final release of a secure and scalable ag-
gregate network attestation mechanism for managing the trusted activities envisioned within the
“Systems-of-Systems” environment. This document describes the Swarm Attestation scheme,
which is a key component of the ASSURED attestation framework. Swarm Attestation will enable
multiple parties to collectively attest their trustworthiness of their configuration state or the correct
execution of a software process to a Verifier. This document expands on the results presented
in D3.6, where we described the first version of the Swarm Attestation scheme, and how the
attestation task is distributed to all devices in the network. Focus will be placed on the privacy

ASSURED D3.7 PU Page 2 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Figure 1.1: Relation of D3.7 with other WPs and Deliverables

concerns of the attestation scheme, and particularly attestation evidence privacy. Attestation usu-
ally requires the attested devices (Provers) to reveal all details regarding the program execution
and system configuration, making the verifying entity a single point of failure that may enable an
attacker to gain sensitive information about all devices that are part of the SoS. In comparison,
the decentralized swarm attestation scheme avoids such a single point of failure. We address
the challenges of a decentralised attestation scheme by designing attestation primitives that use
efficient and lightweight cryptographic operations, such as group-based signatures and rign sig-
natures. This enables the ASSURED framework to effectively verify the trustworthiness even of
large networks, consisting of many devices.

1.2 Relation to other WPs and Deliverables

Figure 1.1 depicts the relationship of this deliverable with other Work Packages (WPs), as well as
the other tasks within the same WP(3). As aforementioned, the focus of D3.7 is the finalization
of the implementation of the ASSURED Swarm Attestation scheme, which provides the capa-
bility to attest to the correctness of the operational state of multiple devices simultaneously in a
privacy-preserving manner, in tandem with the Control Flow Attestation (CFA) and Configuration
Integrity Verification (CIV) schemes, whose final versions are provided in D3.3 [24]. The scheme
presented in this delierable builds upon the initial version of the Swarm Attestation scheme, which
was presented in D3.6 [22]. In addition, the construction of these attestation schemes dictates
the type of attestation evidence to be collected by the SW-based and HW-based tracing schemes
presented in D3.5 [25].

ASSURED D3.7 PU Page 3 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

The descriptions of the envisioned ASSURED use cases, as well as the security and privacy
requirements put forth in this context that need to be fulfilled by the ASSURED SA scheme, were
presented in the context of WP1. However, in D3.7, these scenarios are further formulated to
highlight those specific needs to be captured by the newly integrated features of the final SA
variant and set the scene for the detailed evaluation and benchmarking performed in Chapter 6.
WP2 provided the policy models and information on the types of attacks considered, that need
to be addressed by the ASSURED attestation toolkit. The results of the ASSURED SA scheme
(as well as the other ASSURED attestation enablers) are stored in the Blockchain Infrastructure,
which has been analyzed in detail throughout WP4. The integration of the ASSURED SA scheme
with the overall framework will be outlined in WP5, and WP6 entaile experimentation activities in
the context of the envisioned use cases.

1.3 Deliverable Structure

This deliverable is structured as follows: In Chapter 2, we provide a summary of the updates and
functionalities of the ASSURED SA scheme presented in this deliverable, as well as a high-level
overview of the building blocks and workflow of the scheme. In Chapter 3 we proceed with a
detailed description of the assumed system model especially considering the migration to dy-
namic network topologies better emulating the current needs of complex service graph chains.
This is also accompanied with a summary of the attacker’s capabilities assumed in ASSURED
as well as the list of security and privacy requirements to be achieved. These set the scene
against which the formal verification and mathematical proof of the newly designed protocol is
based upon. Chapter 4 constitutes the heart of this deliverable where we provide a detailed
analysis of the proposed scheme, including a description of underlying cryptographic primitives
employed. A detailed formal security analysis is provided in Chapter 5, where it is demonstrated
that the designed scheme fulfills the considered security and privacy requirements. Experimental
results and evaluations of the offline and online phases of the proposed scheme are provide in
Chapter 6. Finally, Chapter 7 concludes the deliverable.

ASSURED D3.7 PU Page 4 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Chapter 2

Additional Features Complementing the
ASSURED Swarm Attestation Scheme

The purpose of the ASSURED framework is to provide operational assurance to large-scale
Systems-of-Systems (SoS), in order to achieve the required level of trustworthiness of the
entire supply chain ecosystem. In order to achieve this and to fulfill the security and privacy
requirements set forth by such services, we have implemented a set of novel attestation en-
ablers, which have been analyzed in detail in D3.2 [18] and D3.3 [24], and are enforced through
dynamically adaptable policies as mitigation actions to be executed in each Edge device.

The ASSURED Configuration Integrity Verification (CIV) [28, 43] and Control Flow Attesta-
tion (CFA) enablers are able to attest to the correctness of the configuration and behavioural
profile of a device, respectively. However, the issue that arises in this type of large-scale ecosys-
tems considered in ASSURED is that, as single-Prover and single-Verifier attestation schemes,
there are cases where the attestation of a large number of edge devices separately to be per-
formed by a single Verifier is not efficient, as it requires a large amount of time and computational
resources. To this end, we have developed the ASSURED Swarm Attestation (SA) enabler,
which aims to attest to the correctness of a set (swarm) of devices, in a manner that is more
computationally efficient that attesting each device individually, but also attending to the
security and privacy requirements the attested devices are subject to. The first version of
the ASSURED SA scheme was presented in D3.6 [22], where we provided information regarding
the considered system and adversarial model, network topology, and a detailed description of the
designed attestation protocol.

However, it is important to note that there are two core aspects that need to be considered with
regards to privacy considerations in the ASSURED SA scheme, namely identity privacy and
attestation evidence privacy. The former refers to the ability of each edge device participating
in an attestation process to hide its identity and protect its unlinkability and anonymity, by not
requiring the device to divulge any personally identifiable information. Consider, for instance, the
case of the “Smart Cities” scenario where a variety of devices (such as cameras and smoke sen-
sors) collect data towards achieving public safety. In this case, we aim to simultaneously attest to
the correctness of the operational state of multiple such devices simultaneously while protecting
their identity privacy, since the collected data may be personally identifiable and may contain
privacy-sensitive information. This means that we need to ensure that no such identifiable infor-
mation will be leaked during the execution of the swarm attestation protocol unless an authorized
entity makes a request: In the case (for instance) of police enforcement bodies, it should be pos-
sible to have access to the necessary link tokens for associating an (attestation) result back to the
data source - especially if we are referring to deployed video cameras where correctness of con-

ASSURED D3.7 PU Page 5 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

figuration software profiles need to be attached (as security claims) to any video stream provided
and for which such authenticated users should be able to have full linkability and identification of
the respective data sources. Identity privacy has been considered in the first version of the SA
enabler presented in D3.6 [22].

However, during the attestation process, system traces are collected by the Runtime Tracer to
be used as evidence in the attestation process. In the case of CIV, this refers to information on
the device configuration, while in the case of CFA, this refers to control-flow graphs extracted
during the execution of a software process. If these traces are not safeguarded, it is possible
for a malicious party to extract valuable information regarding the device’s configuration software
profile. The latter pertains to the lack of privacy, during the execution of all underlying attestation
tasks (i.e., Control-Flow Attestation and/or Configuration Integrity Verification), as Provers must
comprehensively disclose program execution or configuration details, which is unattractive when
such information should remain secret. Enabling Verifiers to have full knowledge of a Prover’s
memory layout and configuration profile (e.g., type of OS loaded) renders them prone to
privacy breaches and implementation disclosure attacks: “honest-but-curious” verifying enti-
ties can exfiltrate sensitive information on the device’s configuration, safety-critical functionalities,
etc., which can be used to harm its general availability. In addition, exposing all execution details
for verification contradicts the Zero Trust principle (assumed in ASSURED [19]) that dictates that
no initial trust can be assumed between entities. Revealing information on running processes
of a system can enable adversaries to benefit from such knowledge towards mounting run-time
attacks against the program’s codebase.

Compounding this issue, what is needed, is the ability to be able to verify the correct execution
and/or configuration profile of a device (in the swarm) without, however, been able to pinpoint
what is the actual device profile that is running. In other words, consider that each (swarm)
Prover device produces (and signs) a message m as the result of the attestation process to be
sent to the Verifier: No verifying entity should be able to match the content of m back to
the device origin while at the same time the Verifier should be provided with verifiable
evidence on the operational assurance of the device in a zero-knowledge manner.

This feature had not been implemented in the first version of the SA scheme, but is provided in the
second version, which is presented in detail in this deliverable based on the use of ring signatures.
In the following Table 2.1, we summarize the features of the final version of the Dynamic Swarm
Attestation designed in the context of ASSURED. To the best of our knowledge, this is the first
instance of such a scheme that can reconcile swarm attestation and safety-critical operation on
simple IoT devices.

Feature Description
Swarm Attestation Efficiency &
Scalability

ASSURED can attest a large number of devices in an efficient, effective
and privacy-preserving manner, independently of the type of attestation task
that needs to be employed. This requirement is about the operation of the
swarm attestation scheme that should be agnostic to the type of attestation
enabler employed: either Control-flow Attestation, Configuration Integrity
Verification or Direct Anonymous Attestation. Irrespective, of the types of
system properties to be traced (attestation evidence including control-flow
graphs, or device configuration), the ASSURED SA is able to operate in a
secure and efficient way - even in the case where different devices, in the
same swarm, require the attestation of different types of properties, thus,
executing different types of attestation tasks.

Heterogeneity ASSURED considers an IoT swarm that consists of heterogenous devices
ranging from low-end IoT device to more powerful edge devices.

ASSURED D3.7 PU Page 6 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Trusted Computing Base ASSURED leverages the presence of an underlying Trusted Component
(TC) for supporting all the necessary capabilities required for the efficient
and privacy-preserving attestation of a swarm of devices. This includes
Root-of-Trust for Storage, for Measurement and for Reporting. This means
that the Root-of-Trust for the verification is enacted by the TC of the Prover
which adds one extra layer of complexity during the (privacy-preserving) au-
thentication and enrollment of the device into the system: Authenticating the
correctness of a device prior to initiating the construction of the necessary
keys (to support the entire lifecylce of the device binded to the appropriate
key restriction usage policies) is not sufficient. This process needs to also
verify that the device is equipped with a valid Trusted Component whose
certificate has not been revoked for any reason. ASSURED overcomes this
challenge this challenge - identified as ”Key Binding problem“ - consider-
ing all intricacies with the main one been not only on the verification that a
(host) device is equipped with a valid TC but also on on the authentication
between the TC and the host itself and elaborates on the steps taken in the
ASSURED system model for resolving it.

Dynamic Network Topology ASSURED performs swarm attestation of a network that follows the fog
computing paradigm, in which edge devices are the parent of IoT devices.
In this network, IoT devices can demonstrate a high degree of mobility, and
they can establish trust relationships with various Edge parents.

Identity Privacy In ASSURED, edge devices aggregate all IoT signatures of both successful
and failed attestations so as to conceal the identify of the Prover IoT device.
Only in the case of a failed attestation result, which depicts the possible
compromise of a device, the authenticated root Verifier has the ability to link
back the result to the initial proving device - without breaching the privacy of
the remaining swarm nodes. This has been achieved through the integra-
tion of our Enhanced DAA protocol with introduced controlled-linkability and
revocation features [44].

Attestation Evidence Privacy In ASSURED, IoT Devices belonging to a swarm provide verifiable evidence
to convince the parent edge device about the correctness of their opera-
tional state, while not revealing any configuration or control flow information.

Granularity of privacy ASSURED produces swarm attestation evidence in different levels of gran-
ularity ranging from boolean answer of validating the entire network to exact
identification of the compromised devices.

Table 2.1: Novel features of ASSURED Swarm Attestation.

2.1 High-level Overview of the Building Blocks and Workflow

In the ASSURED Swarm Attestation scheme, a spanning tree structure is adopted, where par-
ent Edge devices can collect the attestation results of their children IoT devices, and forward
the attestation reports based on these results to the Security Context Broker (SCB). While the first
version of the scheme assumed a static network topology, as it will be elaborated throughout this
deliverable, the second version was expanded to be able to support dynamic network topolo-
gies as well. The building blocks employed in the design and implementation of the ASSURED
SA scheme are as follows:

• In order to achieve the security, privacy and trust requirements set forth by the AS-
SURED use case demonstrators, the scheme aims to preserve the identity and attestation
privacy of the devices belonging to the swarm, while enabling traceability and linkabil-
ity only for compromised or malicious devices. To this end, we employ group-based
signature schemes, enhanced with an enhanced Direct Anonymous Attestation (DAA)
scheme, which is capable of offering privacy-preserving traceability.

ASSURED D3.7 PU Page 7 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

• In order to achieve the previously mentioned unforgeability and non-frameability proper-
ties, we employ short-term anonymous credentials (pseudonyms) that act as a non-
repudiation means to guarantee that a malicious node is not able to forge an attestation
result, and that the attestation result collected by a device cannot be denied.

• In order to guarantee an efficient and verifiable attestation launch, the initiation of the at-
testation is designed to include a nonce extracted from the ledger as part of the creat-
eNonce function of the attestation contract, and is signed using the DAA key binded to the
underlying TPM-based Wallet.

Leveraging the aforementioned building blocks, the ASSURED Swarm Attestation scheme has
been designed and implemented as part of the ASSURED attestation toolkit. At a high-level,
this scheme consists of five phases (more details on the underpinnings and crypto operations
performed in each phase can be found in Section 4.3):

Setup: Initiated by the SCB (acting as the Verifier), it includes the establishment of network
connectivity, topology, creation of the correct Attestation and DAA Keys (for Edge Devices) and
short-term anonymous credentials (pseudonyms) for IoT devices. The former takes place during
the Secure Enrollment phase [6], and involves the certification of the creation of the DAA Key
with the Privacy CA, as well as the authentication with the Blockchain CA for getting the appro-
priate credentials to participate in the Blockchain infrastructure and to be able to download the
appropriate attestation policies. The latter is performed by the IoT devices when the swarm is
constructed under an Edge device, so the pseudonyms are created and registered under that
Edge device. The output of this phase is the creation and registration of all cryptographic
primitives required to perform Swarm attestation.

Request: Initiated by the SCB in order to request an authenticated measurement of the required
attestation evidence (device configuration or software control flow) by the Runtime Tracer of each
swarm device. In order to issue the challenge, the SCB first has to retrieve the nonce from the
attestation policy on the ledger, sign the nonce, and send it to all swarm devices.

Attest: Executed individually by each swarm device in response to the attestation challenge.
Each IoT device creates a message based on the traced attestation evidence, signs the message
with its pseudonym, and sends it to its parent Edge device that certified the pseudonym. Upon
the reception of these messages, each Edge device verifies the signatures. If this is successful,
they verify the actual measurements as part of the overall attestation process. Depending on the
attestation result per IoT device and the required privacy level, the Edge Device will create the
appropriate aggregate result and sign it with its DAA key, and will also create its own attestation
using the zero-knowledge proofs in the DAA scheme.

Report: Upon receiving the signatures from all its children IoT devices, each Edge Device will ver-
ify the signatures and aggregate only the valid ones. Therefore, if the check on an IoT signature
is not successful, it will not be included in the aggregated signature. Then, each concatenates
the group signatures created on the IoT Device pseudonyms together with the aggregated IoT
signatures, and the final resulting swarm signature is sent to the SCB (acting as the Verifier) in
order to verify if the swarm is in a trustworthy state.

Verify: Upon reception of the aggregate signature, the SCB checks whether all devices in the
swarm are in a trustworthy state, and sends the attestation result to be recorded on the Blockchain
ledger. Note that, when receiving the attestation result from each child IoT Device in the previous
step, each Edge Device acts as a Verifier to perform the verification of the received measure-
ments. Afterwards, based on the application requirements, the Edge device is able to follow one

ASSURED D3.7 PU Page 8 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

of the following approaches: (i) achievement of complete privacy, (ii) anonymity based on the
pseudonyms, and (iii) no privacy. Therefore, ASSURED enables each stakeholder to check the
result on the Blockchain by leveraging the traceability features with the Group Tracer. Specifically,
tracing of the IoT device can be achieved by the Edge Device that has knowledge of the long-term
key corresponding to the certified short-term IoT device pseudonyms.

A detailed description of the first version of this scheme has been provided in D3.6 [22]. In
Chapter 4, we provide details on the second version of this scheme, including the updates and
new features outlined in Section 2.2.

2.2 Features and Updates on the ASSURED Swarm Attesta-
tion Scheme

The central motivation behind the design of the updates and new features implemented in the
second version of the ASSURED Swarm Attestation protocol is the operation within the Zero-
trust paradigm, (”Never trust, always verify”). Based on this principle, in the establishment
of a communication channel between devices, no device is considered inherently trusted. In
the context of the Swarm Attestation scheme, this means that the devices participating in a
Swarm should be able to verify the correctness of their configuration or operational state,
without disclosing any personally identifiable information to the Verifier, since based on
the zero-knowledge principle, the Verifier cannot be considered trusted by default. As previously
mentioned, this refers not only to identity privacy (i.e., the protection of the device identity), but
also attestation evidence privacy (i.e., the protection of traced data used in the context of the
attestation operation).

The notion of zero-trust is particularly important in the context of ASSURED, since the framework
operates within organizations and SoS which are subject to strict security and privacy require-
ments. The concept of Zero-Knowledge Proofs was first introduced in [36], where a Prover makes
a statement constituting a claim (e.g. about the correctness of its operational state) and Verifier
issues a challenge to the Prover, who in turn has to respond with proof of the veracity of its
statement. This proof has to satisfy the following conditions:

1. Completeness. If an honest Prover makes a statement in the form of a claim, the Verifier
should be convinced of this fact by the Prover.

2. Soundness. If the Prover’s statement is false, no malicious entity should be able to con-
vince the Verifier that the statement is true, and vice versa.

3. Zero-knowledge. If the Prover’s statement is true, the Verifier is not required to know
anything else, except for the fact that the statement is true.

In the context of Swarm Attestation, in Chapter 5 we provide rigorous mathematical proofs on the
achievement of these properties, in order to verify the theoretical correctness of the ASSURED
final version of the produced Swarm Attestation scheme.

As it was previously mentioned, the achievement of attestation evidence privacy is important,
since a malicious party who obtains configuration or control-flow information collected by the
Runtime Tracer is able to infer information about various implementation aspects of the device,
which may afterwards be used in order to compromise or hijack the device. These vulnerabilities

ASSURED D3.7 PU Page 9 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

can have varying severity, and can be part of more complex attacks which take various sources
of information into account. Some examples of attacks exploiting such vulnerabilities are as
follows [1]:

1. Revealing the names of hidden directories, folder structure, and their contents, through a
directory listing.

2. Obtaining access to source code files via temporary backups.

3. Obtaining database table or column names which are explicitly mentioned in error mes-
sages.

4. Direct access to highly sensitive information, such as credit card details.

5. Access to API keys, IP addresses, database credentials etc., which may be hard-coded into
the source code.

6. Hinting at the existence or absence of resources, usernames, etc., via subtle differences in
application behavior.

Another significant update to the ASSURED Swarm Attestation scheme presented in D3.6 [22] is
the consideration of dynamic network topologies. In the first version, we considered a static
network topology where the devices participating in the swarm and Verifier remain in static po-
sitions, and the network topology does not change at any time during the process. In a dynamic
topology, we consider that it is possible for a device to change position, and each device has a
coverage range within which communication with another device is possible. This introduces
new issues that have to be addressed in the implementation of the attestation process. Specifi-
cally, if a healty device moves out of the coverage range of the Verifier (or becomes unresponsive
for reasons such as turning to an idle state to reduce battery use), communication is not possible.
However, this possibility may be exploited by a device that has been compromised by a malicious
party, which may also deliberately stop transmitting in order to evade detection. Therefore, we
cannot immediately assume that a device that moves out of range is compromised.

The consideration of dynamic topologies is particularly important in ASSURED in the context of
the envisioned use cases, specifically with regards to the “Smart Satellites” use case, as detailed
in Chapter 4. In Table 2.2, we summarize the features provided by the ASSURED Swarm Attesta-
tion enabler, including both the features that have been implemented and presented in D3.6 [22],
as well as those implemented during the second reporting period, which are documented in this
deliverable and have been integrated in to the ASSURED framework.

ID # I want to <Action>, so that <Reason> Implementation Status
SA 1 As a system operator, I want to at-

test to the correctness of the con-
figuration state or the execution
flow of a software process on sev-
eral devices simultaneously

I can ensure the correctness of
all devices comprising the service
graph chain throughout the op-
erational lifecycle of the system,
based on the (limited) computa-
tional capabilities of the edge de-
vices.

Implemented in the first ver-
sion of the SA protocol pre-
sented in D3.6 [22].

ASSURED D3.7 PU Page 10 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

SA 2 As a system operator, when my de-
vice is part of a swarm, I want to at-
test to the correctness of the con-
figuration state of my device, or the
correctness of the execution flow of
a software process running on my
device, without disclosing any in-
formation about my identity

I can fulfill the identity privacy re-
quirements of the system I belong
to, and so that a malicious third
party, or an ”honest-but-curious”
Verifier, cannot obtain information
about my configuration state and
leverage it in order to identify vul-
nerabilities and compromise my
device.

Identity privacy has been im-
plemented in the first version
of the SA protocol presented
in D3.6 [22].

SA 3 As a system operator, when my de-
vice is part of a swarm, I want to at-
test to the correctness of the con-
figuration state/a control flow on
my device, without sharing the col-
lected system trace data used as
attestation evidence with the Veri-
fier

I can prevent any potentially mali-
cious device from extracting any in-
formation from the traced data that
can be used in order to obtain in-
formation that can be used to infer
implementation data (i.e., memory
flows) that can be used in imple-
mentation disclosure attacks.

Attestation evidence privacy
is part of the second version
of the SA protocol, presented
in this deliverable. Imple-
mented and integrated into
the ASSURED framework.

SA 4 As a Verifier, in case of a failed
Swarm Attestation process, I want
to be able to trace the process to
the device that caused the failed
attestation

so that the source of any failure
can identified, in order to enable
the Attack Validation component to
identify any new vulnerabilities or
zero-day exploits so that the appro-
priate mitigation measures can be
applied.

Traceability and linkability
are presented in this de-
liverable, and have been
finalized and integrated into
the ASSURED framework.

SA 5 As a system operator, I want to
have the capability to revoke a de-
vice that is part of the swarm,
and which has been identified as
the source of a failed attestation
and constitutes a source of risk as
a potentially compromised device
(while also avoiding the revocation
of a healthy device)

the integrity of the rest of the de-
vices of the swarm, as well as the
system as a whole, can be pro-
tected. Also, the rest of the (un-
compromised) devices should con-
tinue their unimpeded operation.

The revocation feature is
presented in this deliver-
able, and has been finalized
and integrated into the AS-
SURED framework.

SA 6 As a system operator, I want to
ensure that honest signatures can
only be created by legitimate de-
vices participating in a swarm

I can ensure that a malicious party
cannot impersonate verified de-
vices that have been legitimately
and securely enrolled to the net-
work.

Non-frameability and un-
forgeability have been taken
into account in the first
version of the SA scheme
presented in D3.6 [22], and
are also examined in this
deliverable.

Table 2.2: Implementation status of ASSURED Swarm Attestation enabler.

ASSURED D3.7 PU Page 11 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Chapter 3

System/Threat Model & Listing of Security
and Privacy Requirements

With regards to the system model employed in the ASSURED Swarm Attestation methodology,
the first version of the protocol presented in D3.6 [22] considered a static topology of inter-
connected heterogeneous devices running mixed-criticality services, with various security and
privacy requirements. In the final version of the protocol, we expand the system model to also
support dynamic (and hierarchical) network topologies. As it was outlined in Section 2.2,
supporting mobility of the Prover devices participating in a swarm is crucial, since it is required
for the efficient attestation of a multitude of devices whose communication path might be
constantly changing which results in different Verifier devices needed to be able to authenticate
and validate the result of the attestation process. On top of that, configuration and behavioural
guarantees will need to be provided in a timely manner so as to impede with the operational
profile of the target application (as is the case for the envisioned “Smart Satellites” scenario).

Specifically, we consider a dynamic interconnected network of v Edge devices and k IoT ac-
tuators, following a hierarchical fog computing structure, as depicted in Figure 3.1. This archi-
tecture, which serves to distribute computational resources from the cloud to the network edge
and closer to the data producers [47], provides novel opportunities in enabling the vision towards
Next-Generation Smart Connectivity ‘SoSeS envisioning the evolution of such safety-critical
SoS from local, stand-alone systems into safe and secure solutions distributed over the
continuum from cyber-physical end devices, to edge servers and cloud facilities.

In this context, a prominent milestone has been the integration of Multi-Access Edge Com-
puting (MEC) capabilities that, as defined by the ETSIC MEC WG 1, has the potential to bring
extended network and computational resources closer to the edge so as to meet the strict
latency requirements of such (5G-enabled) vertical industries that at the same time are char-
acterized by strict requirements as it pertains to fast service deployment times, dynamicity and
trustworthiness but also exhibit different levels of security, privacy, trust and operational assurance
goals, requirements and priorities. This generates a clear trend towards distributed network
models implemented through the Mobile Edge Computing (MEC) concept [2]. According to
this concept, the execution resources (compute and storage) are positioned at close proximity
to the end devices and data generation sources. Edge and fog computing nodes coexist in a
5G fronthaul-backhaul infrastructure and support the mixed-criticality services [39] running either
in the back-end cloud infrastructure or closer to the edge. This denotes the decomposition
of the envisioned service graphs into a mesh of “cloud-native” and “edge-running” mi-

1https://www.etsi.org/technologies/multi-access-edge-computing

ASSURED D3.7 PU Page 12 of 63

https://www.etsi.org/technologies/multi-access-edge-computing

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Figure 3.1: Overview of the Swarm Topology and Signature.

croservices each one with specific security, privacy, trust and safety objectives packaged
on independent execution environments that need to be deployed over dynamically config-
urable, adaptive and higly available virtualized infrastructures capable of providing sufficient data
connectivity and management of physical and virtualised network functions for a large number
of distributed nodes. Essentially, the introduction of edge computing model alters the typical and
simple-structured cloud-based connectivity model (access-core-cloud) to a mesh type model in
which some functions must be executed at the edge part of the network and provide feedback to
the attached end user devices, while portions of data can also be passed to the cloud. The com-
plexity increases further by considering different types of edge nodes that may span from simple
gateway servers to mini-data centers (DCs), thus having different connectivity requirements.

This type of emerging topologies necessitates the consideration of hierarchical features during a
swarm attestation since multiple Verifiers (positioned at different layers) will need to validate the
configuration software profile of their children nodes prior to relaying the information to the next
node in the path. Considering also the zero-trust nature of the environment where such systems
operate, membership in a swarm might change over time (due to node mobility) and has
to be established through the exchange of strong integrity guarantees on the trustworthi-
ness of each comprised node. As links to attesting devices are appraised as meeting a minim
set of integrity requirements (through the employment of single-Prover attestation schemes as
described in D3.3 [24]), these links are then included as members of this trusted topology and
they have to be interpreted to statements on the integrity of the entire swarm topology in a privacy
preserving manner. This challenge has been identified by the IETF RATS as “Trusted Path
Routing Establishment” [38] and is one of the gaps that the ASSURED Swarm Attestation
aims to overcome.

With regards to the mobility features of the devices, as depicted in Figure 3.2, we consider that
both the IoT devices and/or the mobile Edge devices may move within or outside of the coverage
range of a Verifier device. In this context, it is also possible for a Prover device to move to a
different swarm, depending on its positioning. In the ASSURED Swarm Attestation scheme, we
consider the following types of devices and components (as an extension of the system model
already established in D3.6 [22]):

• IoT Devices (D): The devices belonging to the swarm, which consists of a group of het-
erogeneous sensors, actuators and Electronic Control Units (ECUs). Each IoT device is

ASSURED D3.7 PU Page 13 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Figure 3.2: Dynamic network topology.

an untrusted resource-constrained device, such as the ones employed in the envisioned
ASSURED use cases (e.g., the smoke sensors in the “Smart Cities” use case or the actual
CubeSats as aforementioned in the context of “Smart Satellites”), each one of which is de-
noted by Di for i ∈ [1, k], where k is the total number of IoT devices in the swarm. Also, we
assume that one IoT device is only connected to one edge device at a time (although the
parent node can change due to enhanced mobility), and the IoT devices are not equipped
with any additional (or specific) hardware for the provision of dedicated security controls.

• Edge Devices (E): Edge devices are untrusted powerful devices with large computational
resources and storage capacity. These can be any kind of devices belonging to a network or
a service graph chain, and are usually positioned over the MEC or a virtualized environment
that can expose interfaces for communicating with IoT devices in a very efficient manner
and over communication channels with minimum network delays. Each edge device is a
combination of a host Hj and a Trusted Component (TC) (i.e., a TPM module) Mj , that is
responsible for providing crypto the necessary trusted computing capabilities of executing
in a trustworthy manner an attestation process; i.e., provide Root-of-Trust capabilities for
Storage, Reporting and Measurement. Each Edge device is uniquely identified as Ej for
j ∈ [1, v], where v is the total number of Edge devices in the swarm. One E is a parent of
a set of heterogeneous IoT devices and knows the legitimate state (i.e., “golden hashes” of
the binaries) of its children. To this end, each Edge device authenticates its children and
acts as their Verifier.

• Verifier (V): The Verifier is a device that initiates the attestation process and aims to
validate the trustworthiness of the entire swarm. It can either be a device belonging to
the network or an external third party. We consider that the Verifier knows the number of IoT
devices in the swarm, and performs the verification in a legitimate manner, but might attempt
to learn all possible information from the received attestation results (adopting an “honest-
but-curious” mode of operation where it does not deviate from the intended execution of the

ASSURED D3.7 PU Page 14 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

protocol but might be lured into leaking any sensitive information from the monitored Edge
and IoT devices [35]). In other words, in order to fulfill the strict (aforementioned) identity
and attestation evidence privacy requirements, no safety-critical or identifying information
should be associated with any of the swarm devices unless there is a possible compromise
detected through a failed attestation result.

• Privacy Certification Authority (CA): A trusted third party that acts both as an Issuer and
a Network Operator. It is responsible for conducting the secure setup of the fog archi-
tecture, and is an integral part of the secure enrollment process, which was described in
detail in D4.2 [6], and is responsible for verifying the creation of all relevant crypto primitives
(such as the DAA key) and authorizing devices to join the network.

• Runtime Tracer: The Runtime Tracer, which is analyzed in detail in D3.4 [21] and D3.5 [25]),
in the context of Swarm Attestation is part of the device’s Trusted Computing Base (TCB)
that enables the secure introspection and monitoring of the host configuration and
operational measurements that depict its runtime state to be attested. The extracted
traces are also ratified by the secure element, instantiated in the Edge device, and the veri-
fication result is signed by the Edge device’s DAA Key. In case of traced ”quotes“ that does
not match with the expected device state (as circulated by the Privacy CA to all respective
Edge devices) then the root Verifier is notified as the only authorized entity to be able to link
back this failed quote to the originating IoT device to initiate the appropriate raction strategy.

While the hierarchical fog structure considered in the first version of the ASSURED Swarm At-
testation protocol, where Edge and IoT devices are considered part of a spanning tree, was orig-
inally designed to support static network topologies, it also captures the intricacies of dynamic
network topologies considered in the second version. Specifically, it is important to consider
the mobility factor of the devices, where a device may move away from one Edge device and
move closer to another. In this case, towards fullfiling the need for continuous authorization
and authentication of the swarm devices, the ASSURED SA scheme enables connection of
an IoT device with a different edge device, without requiring to recreate all the underlying
cryptographic material, in a seamless manner that does not disrupt the operation of the system.

As aforementioned, in the types of systems considered in ASSURED, Edge devices typically
have larger computational resources and storage capacity than IoT devices. Therefore,
they can act as data distribution gateways for data originating from children IoT devices, such
as data collected from various sensors (for example, smoke detection sensors and surveillance
cameras in the “Smart Cities” use case), across the data processing chain. The ASSURED
Swarm Attestation scheme enables a Prover (Edge device) to convince a Verifier of the integrity
of the aggregated attestation result of a swarm, based on true and signed attestation evidence
shared by the enrolled IoT devices, while safeguarding their identity and attestation evidence
privacy. In other words, the identity of an Edge and/or IoT device is not visible to the Verifier,
unless the attested device is deemed compromised. Therefore, the ASSURED Swarm Attestation
scheme should be able to return verified and anonymously signed attestation results, with no
assumption on the trustworthiness of the Edge/IoT devices or the Verifier.

3.1 Adversarial Model

The security of swarm attestation depends on various factors, including the underlying crypto-
graphic algorithms used and the protocols for exchanging messages and verifying the devices.

ASSURED D3.7 PU Page 15 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

With regards to the considered threat model, which has already been defined in Section 2.2 of
D2.1 [20], we consider the following types of adversaries on swarms:

• Remote software-based adversaries (AdvSW) that aim to compromise IoT and Edge de-
vices in the swarm, and disrupt the functionality the overall functionality by exploiting pro-
gram vulnerabilities and injecting malicious code. Typically, the most prominent types of
attacks that fall under this category are code injection attacks and code reuse attacks:

– Code Injection Attacks: This type of attacks aims to exploit vulnerabilities such as
out-of-bounds memory issues, and aims to inject malicious code while providing user
input. This code will be stored and executed within the address space of the com-
promised application. In the context of Swarm Attestation, this can be addressed by
applying CFA on the swarm devices.

– Code Reuse Attacks: Here, the attacker does not inject new malicious code, but
aims to alter the control-flow of the target device by interfering with the pointers cor-
responding to benign memory regions. Thus, by reusing existing code, the attacker
creates gadgets (i.e., sets of low-level instructions) that simulate the attack path the at-
tacker wishes to perform. Such attacks include Return-Oriented Programming (ROP),
Jump-Oriented Programming (JOP), and Counterfeit Object-Oriented Programming
(COOP). Further information about these attacks is provided in D3.1 [17] and D2.1 [20].

– Resource Exhaustion: An attacker exploits a resource exhaustion vulnerability in
the software of a device in the swarm to disrupt its operations or to prevent it from
performing attestation.

– Privilege Escalation: An attacker exploits a privilege escalation vulnerability in the
software of a device in the swarm to gain unauthorized access to the device or to
sensitive information.

• Network-based adversaries (AdvNET) that can forge, drop, delay, and eavesdrop the mes-
sages exchanged among two devices in the swarm. We consider a classical Dolev-Yao (DY)
adversary [31] with full control over the communication channel between an edge device
and an IoT device in the swarm, or between two edge devices, or between one edge de-
vice and the Verifier. However, in line with other relevant schemes in the literature [10, 52],
we assume the existence of a perfectly secure channel between the Host and the TC in
an edge device that safeguards the correctness of the produced traces. Therefore, the
AdvNET cannot intercept the interaction between the Host and the TC or use the TC as an
oracle. Some examples of such types of attacks are as follows:

– Man-in-the-Middle (MITM): If an attacker has control over the communication channel
between two swarm devices, they can forge, drop, delay, or eavesdrop the messages
exchanged between these devices.

– Replay Attacks: An attacker captures messages exchanged between devices in the
swarm and replays them at a later time to disrupt the swarm or to gain unauthorized
access to the network.

– Sybil Attacks: An attacker creates multiple fake devices in the swarm to manipulate
the behavior of the swarm or to disrupt its operations.

– Eavesdropping Attacks: An attacker passively listens to the communication between
devices in the swarm to gain sensitive information, such as keys or authentication
credentials.

ASSURED D3.7 PU Page 16 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

– Spoofing attacks: These aim to impersonate network traffic so that it appears to
originate from a trusted and authorized source, and may include e-mail spoofing, IP
address spoofing, DNS server spoofing, etc.

– Denial of Service (DoS): Performed by flooding the target device with extra unneeded
requests to overload the system and reduce the availability of network or server ser-
vices and resources.

– Malware: Malicious software that can spread rapidly among connected devices, such
as viruses, ransomware, and spyware.

– Compromised-key Attacks: Refers to the exploitation of improperly implemented
cryptographic protocols that lack forward and backward secrecy, where attackers can
use compromised keys to obtain access to secure communication, or generate addi-
tional keys.

– Network Attacks on the TPM: This is particularly notable in ASSURED, where TPM
modules are embedded in the devices as Trusted Components (TCs). The host,
namely the Trusted Software Stack (TSS) of the TPM can be hijacked in order to read,
block, or modify the communication between the TPM and external Verifier. Thus, this
can be seen as a subtype of MITM attacks.

• Hardware adversaries on swarm attestation include:

– Side-Channel Attacks: An attacker exploits information leaked through side chan-
nels, such as power consumption, electromagnetic radiation, or timing, to extract se-
crets used for encryption and authentication or to bypass the attestation process.

– Physical Tampering: An attacker physically modifies the hardware of a device in the
swarm to bypass the attestation process or to compromise its security.

– Rogue Devices: An attacker inserts a rogue device into the swarm to compromise its
security or to manipulate the behavior of the swarm.

– Fault Injection: An attacker injects faults into the hardware of a device in the swarm
to disrupt its operations or to prevent it from performing attestation.

Assumptions: To defend against hardware-based attacks on swarm attestation, it is important to
implement secure hardware design practices, such as secure boot, and in general prevent unau-
thorized modifications to the hardware. Additionally, it is important to use secure communication
protocols and encryption to protect sensitive information from being extracted through side chan-
nels (an assumption been made for all ASSURED crypto primitives is been leakge resistant as
this type of attack vectors falls outside the scope of the current research activities). It is also im-
portant to implement secure key storage mechanisms to prevent unauthorized access to secrets
used for encryption and authentication. Finally, it is important to monitor the swarm for rogue
devices and to detect and respond to physical tampering or fault injection attacks. However, note
that physical adversaries (AdvPHY) that are capable of extracting information from the TC are
currently not considered in the ASSURED swarm attestation protocol.

In line with the state-of-the-art RA schemes, we assume software-only adversaries and we keep
a Physical Adversary out of our current context. A Distributed Denial of Service (DDoS) attack is
out of scope of this deliverable.

ASSURED D3.7 PU Page 17 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

3.2 The Key Binding Problem

As has been extensively described in Deliverable D3.3 [24], one core innovation of the ASSURED
attestation enablers is the offering of local verification capabilities through the use of key
restriction usage policies which, in turn, enable the feature of zero knowledge. In this context,
there is no need for sharing any attestation evidence from the Prover since the underlying Trusted
Component (TC) is responsible for checking the correctness of the device prior to allowing it
access to any securely stored crypto material (keys). Hence, the attestation result is encoded
into a signature constructed with the use of an Attestation Key (AK) that is binded to a set of
appropriate policies that govern the creation and usage of the key. More specifically, the AK is not
released by the underlying TC to the host (for further processing as part of encryption and signing
tasks) unless the policy is satisfied [44]. This is one of the core features of ASSURED that was
introduced for enabling efficient, scalable and privacy-preserving configuration integrity
verification [28] based on the correct creation of the keys during the secure enrollment of
the device into the overall network [6].

This means that the Root-of-Trust for the verification is enacted by the TC of the Prover which
adds one extra layer of complexity during the (privacy-preserving) authentication and enrollment
of the device into the system: Authenticating the correctness of a device prior to initiating the
construction of the necessary keys (to support the entire lifecylce of the device binded to the
appropriate key restriction usage policies) is not sufficient. This process needs to also verify that
the device is equipped with a valid Trusted Component whose certificate has not been revoked for
any reason. In what follows, we will expand on exactly this challenge - identified as ”Key Binding
problem“ - considering all intricacies with the main one been not only on the verification that a
(host) device is equipped with a valid TC but also on on the authentication between the TC and
the host itself and elaborate on the steps taken in the ASSURED system model for resolving it.

We have to note that while this solution is applicable to any TC capable of managing such policies,
for clarity we provide the details considering the use of a TPM as a trusted component based also
on its instantiation for the experimentation of all envisioned ASSURED use cases.

A Trusted Platform Module (TPM)’s Endorsement Key (EK) is used in order to identify the TPM,
while its Attestation Key (AK) is used in order to perform actions pertaining to attestation ser-
vices. For instance, such operations may include signing a set of Platform Configuration
Registers (PCRs), providing a timestamp, or certifying another TPM key. The motivation
behind using two separate keys is in order to protect user privacy, but it also raises the issue of
how to correctly bind these two keys together. Key binding is indispensable towards building
a revocation infrastructure. For example, consider a scenario where the Issuer is aware that a
TPM’s EK is compromised after it issues the credential to the TPM’s AK. Key binding enables the
Issuer to put the TPM’s AK, correctly bound to its EK, into a revocation list. Therefore, key binding
allows the correct execution of a revocation action. In this context, it should be ensured that no
honest user is revoked, while keys belonging to corrupt users should be revoked. Thus,
Key binding offers a “lightweight” key revocation solution.

Key binding is also required if signatures need to be traceable. Consider, for instance a re-
warding service which allows users to earn incentives in an anonymous manner, by allowing a
user to choose to link one or more transactions to their identity. If a user reaches a reward point,
they want to link their signature to the original credential generation protocol. If the key binding
property holds, the Issuer can confirm which TPM should obtain the reward. If the Issuer has
a mismatching record binding an honest user’s AK with a corrupted TPM’s EK, as a result, the
corrupted TPM will benefit from the honest TPM’s contributions. As it is further elaborate in the

ASSURED D3.7 PU Page 18 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

following Section 3.3, traceability is a key requirement of the ASSURED Swarm Attestation
scheme, and will be provided in the final design presented in this deliverable.

The difficulty of solving the Key Binding problem stems not only from the “strong” privacy require-
ments of the TPM, but also from the strong trust assumptions that need to be made to capture
the intricacies of the authentication between the TPM and the host. Specifically, a TPM is em-
bedded in its host platform. Any communication between the TPM and the outside environment
is performed via the host, and the TPM can only respond to its host’s commands. Authentica-
tion between the TPM and the Issuer is also performed via the host. In the security threat model
typically considered in trusted computing technologies (and is also adopted by ASSURED as out-
lined above), the host can potentially be an active attacker who can read and modify messages
sent from or to the TPM, block the communication between the TPM and external partner,
and can even coordinate some rogue and undetected TPMs. Because of the presence of the
host with such physical proximity to the TPM and the lack of ability for the TPM to authenticate
an external partner, it is very difficult for the remote partner to be convinced of a cryptographic
binding between a TPM’s AK and EK. Recently, Chen et al. [15] argued that no existing DAA
scheme provides the Key-Binding property, and proposed a novel solution to this problem. The
solution was also implemented in a real TPM module. We adopt this solution in our Enhanced
DAA protocol in order to establish a secure authentication channel that binds the TPM’s EK to its
Attestation DAA key that leads to the correct revocation and linkability of swarm signatures [44].

3.3 Security & Privacy Requirements and Trust Assumptions

3.3.1 Security & Privacy Requirements

In Chapter 4 of D3.6 [22], we outlined the security and privacy requirements that need to be
fulfilled by the ASSURED Swarm Attestation scheme. Here, we expand on these, and place them
into the context of the newly implemented features. Also, in order to prove the correctness and
soundness of the attestation protocol, we will perform formal verification using formal logic
and mathematically rigorous arguments. This analysis, which will be presented in Chapter 5,
will prove that our method achieves the below described requirements.

Note that, in order to conduct the mathematical proof, we employ the Universal Composability
(UC) model [12], in which security follows the simulation-based paradigm, meaning that a proto-
col is as secure as an ideal functionality, which performs the desired tasks in a way that is
secure by design. To this end, we aim to equate the real-world network topology in which the
ASSURED Swarm Attestation protocol will be applied to an ideal-world model, which are both
indistinguishable from each other from the perspective of a malicious third party. In this context,
we aim to break down the attestation scheme into simpler building blocks with provable security,
each one of which fulfils one or more of the envisioned requirements. The security definition in
the UC model is given with respect to the high-level security properties given in Table 3.1, where
we expand on the properties of the Swarm Attestation scheme outlined in D3.6 [22].

ID Requirement Description
SP1 Anonymity Considering an external Verifier V , it should be possible for honest Edge

and IoT devices to conceal their identities from V by creating anonymous
signatures. In other words, the Verifier should not be able to determine
whether two such signatures originated from the same or different devices.

ASSURED D3.7 PU Page 19 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

In the case of IoT devices, anonymity is preserved through the use of short-
term anonymous key pairs (pseudonyms) to create signatures, which
should not be traceable to their source by the Verifier, except in the case of
a failed attestation. In this case, Linkability (SP7) and Traceability (SP2)
should be possible.

SP2 Traceability A Verifier V who is part of the network should be able to trace aggregate
signatures containing the overall attestation result back to the edge devices,
while also allowing a parent edge device to link the signatures of its children
back to the IoT devices.

SP3 Revocation As an extension of Traceability (SP2), it should be possible for the source
of an attestation failure (e.g., an failed signature) to be traceable back to it
source, in order to revoke a potentially compromised device. Conversely, the
revocation method should be designed, so that the revocation of an honest
device (i.e., a malicious party tricking the Verifier into believing an honest
device is malicious) should not be possible.

SP4 Correctness Signatures created in an honest and correct manner should also be con-
sidered valid. In addition, honest users should not share the same signing
key.

SP5 Non-Frameability It should not be possible for a malicious adversary to create signatures that
may successfully impersonate an honest device, or link to honest signa-
tures. In other words, it should not be possible for a malicious device to
trick the Verifier into believing it is an honest device, or a device legitimately
registered into the network.

SP6 Unforgeability As an extension of Non-Frameability (SP5), it should be infeasible for a
malicious party to forge signatures, i.e., to produce attestation message
signature pairs (µ, σ) that are accepted by the verification algorithm, without
knowledge of the secret key of the users.

SP7 Linkability Suppose that the Verifier is an external device that is not an authenti-
cated member of a network. In this case, this Verifier should be able to
audit the correctness of the swarm attestation process, and verify that the
attestation process was executed by a correct device. Therefore, it should
be possible to link aggregate signatures back to the edge devices, without
breaching their identity privacy.

SP8 Provenance A Verifier (V rf) of a swarm is able to verify that the aggregate signature is
based on the target devices participating in the swarm, by either certifying
the identity of each device (without privacy considerations) or based on the
correct number of group members (by checking the number of signatures
included in the aggregate result) without being able to link these signatures
to the source devices. Linkability (SP7) should only be enabled in case of a
failed attestation.

SP9 Coalition Resistance According to the Linkability (SP7) property, it should be possible to link a
failed attestation to the device that caused it. However, a subset of the
swarm devices may aim to circumvent this capability by colluding together
to create signatures that cannot be traced to any of them. The designed
scheme should not allow this to occur.

SP10 Exculpability No member of the swarm (neither an Edge Device nor an IoT Device) should
be able to produce signatures on behalf of the other swarm members.

SP11 Integrity of Swarm Attes-
tation as a Whole

The aggregated attestation result should reflect the claimed integrity mea-
surement during the attestation.

SP12 Integrity of exchanged
communication data be-
tween devices

It should be ensured that the data exchanged between devices (such as
attestation evidence sent from the IoT Devices to the parent Edge Device)
is correct and legitimate, and threats such as the aforementioned MITM
attacks should not be possible.

SP13 Compatibility with Static
and Dynamic Networks

The Swarm Attestation scheme should be applicable to both static network
topologies (where the Edge and IoT Devices remain in static positions), and
dynamic topologies (where the Edge and IoT Devices may move in and out
of the coverage range of the Verifier).

ASSURED D3.7 PU Page 20 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

SP14 Evidence Authentication We formalize the intuitive security requirement that an adversary A should
not be able to pretend that an edge device Ej has a configuration csE sat-
isfying the property that has to be attested (i.e., csE ∈ CS), when in fact
csE /∈ CS.

SP15 Configuration Privacy The security requirement that the configuration csE of an edge device Ej

should be kept private. For this requirement, both Ej and its embedded
TPM have to be honest because Ej could always send csE to an adversary
A.

Table 3.1: Security Requirements of the ASSURED Swarm Attestation Scheme.

The privacy requirements of the ASSURED Swarm Attestation scheme, which are fulfilled by
leveraging the newly implemented features that will be described in detail throughout the remain-
der of this section, are outlined in Table 3.2.

ID Requirement Description
PP1 Identity Privacy In order to protect devices from malicious Verifying entities, no successful

attestation result on a swarm of devices should be linked back to its device
origin. Conversely, in order to protect the system from malicious devices,
it should be possible to reveal the identity of a device that caused a failed
attestation result. In this context, the ASSURED Swarm Attestation scheme
should support three operational modes, namely Full Anonymity (PP2), Par-
tial Anonymity (PP3), and No Anonymity (PP4).

PP2 Full Anonymity During a Swarm Attestation process, it should be possible for the parent
Edge Device to not merge the signed failed attestation result of an IoT De-
vice in the IoT signature, so that the central Verifier should be able to un-
derstand that one (or more) IoT Devices failed with the execution of their
attestation from the size of the aggregate signature (i.e., if the number of
included signatures is less than the original size of the swarm). Thus, only
Verifiers with the appropriate authentication privileges should be able
to link back a failed attestation result to the identity of the origin IoT
Device.

PP3 Partial Anonymity In this operational mode, it should be possible for the parent Edge Device
to merge all signatures into the aggregate signature (corresponding to both
successful and failed attestations) through the use of short-term anonymous
credentials (pseudonyms) used by the IoT devices to sign their individual
attestation results. Thus, the identity of the IoT Devices will not be recorded
in the attestation result on the ledger, but the linked pseudonym can only be
linked by the parent Edge Device. An authenticated Verifier that wishes
to link back to the device identity needs to interact with the SCB to
de-anonymize the Edge Device that performed the aggregation.

PP4 No Anonymity It should be possible to perform Swarm Attestation processes with no pri-
vacy considerations, where the parent Edge Device includes all (successful
and failed) attestation results from the IoT Devices in the aggregate result,
which is afterwards recorded to the ledger.

PP5 Attestation Evidence Pri-
vacy

It should be possible for the IoT Devices belonging to a swarm to be able to
provide verifiable evidence that attests to the correctness of their operational
state, while not revealing any configuration or control flow information to the
parent Edge Device. Thus, the IoT Device should be able to utilize arithmetic
circuits (zkSNARK) that require the attestation evidence as input, and only
provide the attestation result as output, in order to be forwarded to the parent
Edge Device.

Table 3.2: Privacy Requirements of the ASSURED Swarm Attestation Scheme.

ASSURED D3.7 PU Page 21 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

3.3.2 Trust Modeling

To attest the trustworthiness of large-scale swarms in ASSURED, in the following, we outline the
hardware components that need to be present in the IoT Devices and Edge Devices:

IoT Devices: To gurantee security of the attestation protocol, IoT devices involve software/hardware
co-design, relying on minimal hardware support that consists of a Read-Only Memory (ROM)
and a simple Memory Protection Unit (MPU) to guarantee code and memory isolation. Exam-
ples of research platforms with such capabilities include SMART [33], TrustLite [40], TyTan [9].
A commercial example includes ARM TrustZone technology [48] which provides security with
hardware-enforced isolation built into the CPU, and it is integrated into today’s Arm application
processors and in the new generation Arm microcontrollers. Due to the attestation privacy re-
quirements in ASSURED, we assume that IoT devices are equipped with a minimal trust anchor
that enables control-flow tracing of the IoT execution at runtime. The Runtime Tracer has been
analyzed in detail in D3.4 [21] and D3.5 [25].

Edge Devices: Edge devices in ASSURED are untrusted powerful device with large computa-
tional power and storage capacity. An Edge device is a combination of a Host and a Trusted
Component (TC) that provides anonymity guarantees. In practice, ASSURED that each Edge
device are equipped with a standardized TPM and utilizes DAA protocol to provide anonymous
authentication of the Host without revealing additional information.

ASSURED D3.7 PU Page 22 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Chapter 4

Scalable Swarm Attestation Protocol with
Enhanced Privacy Capabilities

As aforementioned, swarm attestation schemes aim to provide scalable attestation solutions
that verify the trustworthiness of large-scale networks in a more efficient way than attest-
ing devices individually. This is an important property for complex systems, as the ones envi-
sioned in ASSURED, where the focus is to create trust-aware service graph chains, comprising
heterogeneous devices (with different hardware capabilities), loaded with (possibly) disparate
software configuration profiles. However, the endmost goal is not to simply reduce the com-
munication overhead compared to the naive approach of applying many time single-Prover attes-
tation tasks, but also enable an additional layer of attestation intelligence and governance that
can allow Verifier devices to cope with the intrinsic characteristics of the service graph topologies
that usually pervade these types of “Systems-of-Systems”: (i) Such systems usually demonstrate
a high level of mobility resulting in continuous changes occuring to the construction of the rout-
ing tree since they will need to establish new “parent relationships” with other nodes for relaying
its communicated data, and (ii) The need to establish federated trust between the devices in
the swarm so as to manage the hierarchical topology that usually characterize such systems
where the device at each layer can act as the Verifier for its children or a tree-based structure
where only the root node can act the root Verifier.

This type of features is one of the motivating factors for the enhanced version of the ASSURED
Swarm Attestation mechanism that can support such dynamic network topologies, requiring
efficient and continuous authentication capabilities (between the IoT device and the Edge
device acting as the parent node in this particular time frame), and flexible key management
for enabling the verification of (signed) attestation reports in a hierarchical topology: From
intermediate nodes (acting as Verifiers) that might not have established a trust relationship with
the Prover and need to query another trusted entity for the correctness of the presented crypto
material or offload the verification process (thus, enabling a verification-as-a-service model).

Consider, for instance, the case of the “Smart Satellites” scenario, where multiple deployed satel-
lites (operating in Low Earth Orbit (LEO)) need to exchange data with a Ground Station (GS) as
part of the loaded (safety-critical or monitoring) application. This means that the Ground Station
has only a limited time window for securely communicating with the satellite. Depending on the
orbit altitude, the frequency and the capabilities of the Ground Station this time window can be
in the order of few minutes. CubeSats normally are equipped with RF interfaces of limited band-
width, resulting to a reduced data rate between the GS and the satellite. Therefore, in most cases,
the complete set of mission-related data cannot be transferred on a single pass over a GS.

Compounding this issue, multiple Service Providers utilize the SatNOGS (see adjacent figure)

ASSURED D3.7 PU Page 23 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

which is a network of multiple Ground Stations in different
places across the globe, all connected through well protected
cloud infrastructures. Having multiple Ground Stations in dif-
ferent places leads to an increased number of communication
windows, thus, increasing the availability of a satellite. During
a data transmission session, a Ground Station at the end of the
communication window can inform the backhaul infrastructure
regarding the amount of data successfully received from the
satellite and which data still remain for receiving the complete
amount of information defined as part of the specific mission.
The service that orchestrates the communication (running at
the Mission Control Center (MCC) which acts as the root Veri-
fier) can locate the next GS with an available (future) commu-
nication window and inform it to get ready for data reception.

This translates to constantly changing the routing tree from the satellite to the MCC through
different Ground Stations (or a set of multiple GS that form a path to the MCC), thus, aggravat-
ing the requirement for efficiently attesting the set of Ground Stations and the satellite prior to
the establishment of a secure communication window. This requires having adequate integrity
guarantees on the correctness of each GS, participating in the constructed data path in each
session, and needs to be executed in a timely manner so that it does not strip any of the time
available (during the communication window) for the transmission of the mission-related data.

On the other hand, consider the example in the “Smart Aerospace” use case where all on-board
Electronic Control Units (ECUs) need to be able to provide operational information (collected
during the duration of a flight) to the Ground Station (through the Secure Server Router (SSR)
that can be acting as the Prover) accompanied with guarantees on the correctness of this data;
no ECU was compromised that may have altered the output of such operational data. Thus, in
such a flow, it is more important to have strong assurance claims on the correct config-
uration and execution of all ECUs since there are no immediate time constraints on the
performance and collection of the required information when the airplane is on the ground. Thus,
in this scenario, different ECUs will need to provide evidence based on the execution of either
Configuration Integrity Verification (CIV) or Control-Flow Attestation (CFA) tasks but in a privacy-
preserving manner so that no unauthorized entity or stakeholder, acting as Verifier, can fingerprint
the type of aircraft based on the attested software configuration profile. This necessitates for the
second feature implemented towards attestation evidence privacy.

Overall, the main motivation is to be able to have more efficient and scalable aggregate network
attestation schemes, that while been able to integrate the attestation enablers already defined
in D3.2 [18], will also enable ASSURED to make intelligence decisions on how to adjust the
execution of such security enablers in dynamic network topologies so as to identify the golden
balance between converging security and safety without impeding the not the performance nor
the privacy of the deployed devices. The main crypto primitives employed towards achieving
these two core functionalities are listed in the table (Table 4.1) below:

Crypto primitive Description
Bilinear Signature Aggre-
gation

In order for ASSURED to be able to accommodate hierarchical system topolo-
gies where parent Edge devices receive signed attestation results from their (chil-
dren) IoT devices which can verify and forward them in an efficient and privacy-
preserving manner to the upper layer node, it leverages aggregation capabilities.

ASSURED D3.7 PU Page 24 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Bilinear Signature Aggre-
gation

More specifically, Bilinear Aggregation Signatures (Section 4.1.1) are employed
whose ultimate purpose is to reduce the length of aggregate signatures in appli-
cations that are based in the construction and exchange of multiple signatures
for safeguarding data (and attestation) integrity. Think, for instance, the afore-
mentioned scenario in the context of “Smart Satellites”: The satellite will transmit
its data, alongside with a signature containing the attestation result on its correct
configuration, to the Ground Station with which it can establish a communication
window. The Ground Station, upon reception of this attestation attribute, it can
verify the correctness of the software profile executed on the originator satellite
and then construct an aggregate signature fusing also the result of its local attes-
tation process (as executed by the underlying TCB) prior to forwarding it to the
next Ground Station in the routing parth towards the MCC. Note that this scheme
can be performed by any entity in the service graph chain, without the coopera-
tion of the signers, including any untrusted party (not having established a trust
relationship with any of the prevous signers, thus, enacting upon the zero-trust
concept). As will also be described in the architectural details of the new SA
scheme (Section 4.3), the use of bilinear signatures enables a rather efficient
verification process.

DAA Signature When an Edge device wishes to create a signature in a manner that enables
controlled-linkability for one of its children IoT devices (allowing the linkability of
a provided signature back to the original signed only by authorized entities (root
Verifier) and in the case of a failed attestation result), the ASSURED Enhanced
DAA scheme is employed [26] (Section 4.1.2). This enables the feature of identity
privacy of the IoT devices, with linkability and traceability functionalities only in the
case of a failed attestation and by the entity that has been authorized to manage
the link token constructed during the Secure Enrollment phase.

Ring Signatures In order to achieve evidence authentication and evidence privacy, we leverage
the notion of ring signatures, which achieve the properties of unforgeability (i.e.,
it is not possible to create a signature without knowing one of the corresponding
secret keys) and anonymity (i.e., it is not possible to deduce the identity of the
device that created the signature). Therefore, we use DAA signatures to hide
the identity of the Edge devices, and the anonymity property of ring signatures to
achieve evidence privacy for the Edge Devices.

In what follows, we provide details on the aforementioned crypto enablers and their use in the
context of the newly devised protocol.

4.1 Preliminaries - Dynamic SA Scheme Building Blocks

To enable a privacy-preserving and accountable swarm attestation approach, ASSURED Swarm
Attestation adopts Direct Anonymous Attestation (DAA) to compute the device attestation in zero
knowledge and relies on Bilinear Aggregation Signatures to efficiently aggregate the devices’
signatures across the swarm.

4.1.1 Aggregated Signatures

As it was previously mentioned, the ASSURED Swarm Attestation scheme utilizes a hierarchical
system model, where parent Edge Devices receive signed attestation results from their children
IoT Devices, and afterwards aggregate their received signatures in order to forward them to the
Verifier. In order to perform this aggregation, we employ the concept of Bilinear Aggregation

ASSURED D3.7 PU Page 25 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Symbol Description

Ej The jth edge device
Mj TC that corresponds to the jth edge device
Hj The host the corresponds to jth edge device
V External Verifier
I Issuer
v Number of edge devices in the swarm
tsk TC ’s private key
r Secret key used to generate ring signatures
C The commitment of the device configuration
CS = {cs1, . . . , csn} Set of acceptable configuration specifications
kij The established Diffie- Hellman secret between Ej and Dj

si The desired device Di correct state
csE The Edge device configuration
Qj Ej ’s public key known by the Privacy CA
(a, b, c, d) Ej ’s credential created by the Privacy CA
Tj Ej ’s public tracing key known by the Opener
T The Opener’s Tracing Key
q A prime number that defines the order of cyclic groups, G1, G2

g, g1, g2 and g3 Three generators of the groups G,G1, G2 and G3 respectively
(x, y) The Privacy CA private key
(X, Y) The Privacy CA public key
(xL, yL) The IoT device long-term key-pair
(xp, yp) The IoT device short-term key-pair (i.e., pseudonym)
σL
DAA The DAA signature of an edge device on the IoT device long-term public key yL

σp
DAA The DAA signature of an edge device on the IoT device short-term public key yp

σi The ith IoT device signature on a message mi using the short term secret key xp

nv Attestation challenge
q Prime number
ρ, r, s Random numbers in Zq

k Number of IoT devices in the swarm
P Number of certified pseudonyms by edge device for each child IoT device
σ[1−n] The aggregated signature of n IoT devices
bsn Random input in {0, 1}∗ used for tracing and linking two DAA signatures
SPK Signature based Proof of Knowledge

Function Description

H Hash function defined as H : {0, 1}∗ −→ G1

e A pairing function defined as
e : G1 ×G2 → G3 and e(g1, g2)→ g3

Proofs Description

πipk Proof of the CA public key construction
π1, π2 Proofs of construction of

Qj and Tj respectively
πCA
j Proof of the Ej ’s credential construction

πL, πp Proof of construction of yL and yp respectively

Table 4.2: Notation Summary

Signatures, whose ultimate purpose is to reduce the length of aggregate signatures in applica-
tions that use multiple signatures. Note that this scheme can be performed by anyone, without the
cooperation of the signers, including any party untrused by the signers. It also does not impose
an order on the signers, meaning that the order with which the IoT Devices send their attestation
results to the parent Edge Device is irrelevant.

In the Bilinear Aggregation Signature scheme, consider that each IoT Device i creates a signature
σi on a message mi containing its attestation result, and afterwards sends the signed message
to its parent Edge Device. Therefore, the parent Edge Device will eventually possess a set of
n signatures σ1, ..., σn on messages m1, ...,mn under public keys PK1, ..., PKn, respectively.
In this case, the parent Edge Device will need to use a public aggregation algorithm in order
to compress all n signatures into a single signature σ, whose length is the same as that of
a signature on a single message. In order to verify the aggregated signature, a verification
algorithm is employed, which receives all the original messages and public keys as input and

ASSURED D3.7 PU Page 26 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

verifies whether the aggregate signature σ is valid.

The Bilinear Aggregation Signature consists of the following steps:

1. Key Generation: For a particular IoT Device, a random x ← Zq is selected, and w ← gx

is calculated. x ∈ Zq and w ∈ G are the private key and public key of the IoT Device,
respectively.

2. Signing: For a particular IoT Device, given its public key w, its private key x, and the
message m ∈ {0, 1}∗ containing the attestation result, h ← H(w,m) is computed, where
h ∈ G, and σ ← hx. The signature is σ ∈ G.

3. Verification: Given a IoT Device’s public key w, a message m, and a signature σ, h ←
H(w,m) is computed. The signature is accepted as valid if e(σ, g) = e(h,w) holds.

4. Aggregation: An index i is arbitrarily assigned to each IoT Device whose signature will
be aggregated, ranging from 1 to n. Each IoT Device i provides a signature σi ∈ G on a
message mi ∈ {0, 1}∗. Then, σ ←

∏n
i=1 σi is computed, and the aggregate signature is

σ ∈ G.

5. Aggregate Verification: Given the aggregate signature σ ∈ G for a set of IoT Devices
(indexed as before), the original messages mi ∈ {0, 1}∗, and public keys wi ∈ G, it is
possible to verify the aggregate signature σ by computing hi ← H(wi,mi) for 1 ≤ i ≤ n.
The verification is successful if e(σ, g) =

∏n
i=1 e(hi, wi) holds.

4.1.2 Direct Anonymous Attestation

In addition, in order to provide the required user-controlled linkability features that need to be
present in the ASSURED Swarm Attestation scheme, we utilize an Enhanced Direct Anony-
mous Attestation (DAA) scheme, which has been designed in the context of ASSURED and
has been described in detail in D3.2 [18]. In general, DAA is a platform authentication mecha-
nism that allows privacy-preserving remote attestation of a device associated with a Trusted
Component (TC), instantiated here with a Trusted Platform Module (TPM). However, the scheme
designed in ASSURED is agnostic to the type of TC used, and can be applied to TCs other than
TPMs.

In ASSURED, we have designed an enhanced DAA scheme, which enables the Verifier to trace
a failed attestation back to the IoT device that caused the failure. The ASSURED DAA scheme
consists of five algorithms:

1. SETUP: In this phase, the system parameters must be chosen, and the Privacy Certification
Authority (Privacy CA) needs to generate its keys. The system parameters and the Issuer’s
public keys are then published and made available to any node that needs to verify the
validity of a signature.

2. JOIN: The device joins the group and obtains an Attestation Key Credential (AKC) for an
ECC-DAA key created by the TC. The key can then be used to anonymously sign a mes-
sage, or attest to data from this TC.

3. SIGN: Using the ECC-DAA key, a range of signing operations can be performed.

4. VERIFY: The DAA signature can be verified, in order to check whether it is valid or invalid.

ASSURED D3.7 PU Page 27 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Figure 4.1: Property-based Attestation Framework enhanced with ring signatures

5. LINK: Checks two signatures to see of they are linked. It returns true or false, depending
on whether they are linked or not.

Note that the DAA signature includes a zero-knowledge proof that is used in order to convince
the Verifier that the signer possesses a valid membership credential, without divulging any infor-
mation to the Verifier about the signer’s identity. Thus, DAA is a protocol that provides the TC
with the ability to sign its register values anonymously, while still convincing the Verifier that is
possesses valid DAA credentials.

4.1.3 Ring Signatures

The concept of ring signatures was first introduced in 2001 by Rivest, Shamir and Tauman [51].
Ring signatures are a type of anonymous digital signatures, where the signer takes a number
of public keys (referred to as the ring), as well as a secret key which corresponds to one of the
public keys. When the signer outputs a signature, a Verifier can be convinced that a secret key
corresponding to one of the public keys has been used for the signature, yet the Verifier cannot
tell which secret key is used. The Verifier checks only the validity of the signature, but cannot
know the identity of the actual signer. Ring signatures have many applications, such as e-voting
and e-money.

In general, ring signatures have two main properties:

• Unforgeability: It is not possible to sign on behalf of a ring without knowing one of the
associated secret keys.

• Anonymity: It is not possible to know the identity of the user that outputs a signature.

In the ASSURED Swarm Attestation scheme, we use the DAA signature to hide the identity of
the Edge devices, and we need the ring signature anonymity property to achieve the evidence
privacy of an Edge device instead of hiding its identity.

ASSURED D3.7 PU Page 28 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

TPM Host V erifier
tsk, csE CS = {cs1, . . . , csn}

csE

CS = {cs1, . . . , csn}

nv←− nv←−

r ∈R Z∗
q

C = gcsE1 gr mod q
σDAA =
SignDAA(tsk;C, nv)

C, r, σDAA−−−−−−→

yj = C/g
csj
1 mod q

∀j ∈ [1, . . . , n]
σring = SigRing(r, yj, nv)

(σDAA, σring , C)−−−−−−−−−−→

Verify σDAA(C, nv)
yj = C/g

csj
1 mod q

V erRing(σring, C, yj, nv)

Figure 4.2: Property-Based Attestation (PBA) Sequence of Actions

To achieve evidence privacy and authenticity in the ASSURED Swarm Attestation protocol, we
employ ring signatures where we define two main security requirements: evidence authenti-
cation and evidence privacy. While the former guarantees an unforgeable binding between
the platform and its evidence specification, the latter provides the non-disclosure of the ev-
idence itself. In the ASSURED Swarm Attestation protocol, these requirements are achieved
through the use of a ring signature, i.e., evidence privacy results from the anonymity of the ring
signature whereas evidence authentication is based on the unforgeability of the signature.

We denote the generation of a ring signature σring on a message C with respect to the public key
yi 1≤i≤n with private signing key r by σring := SigRing(r; yi;C). Signature verification is denoted
by V erRing(yi;σring, C).

4.1.3.1 Ring Signature Scheme

• Key generation: Let γ be a security parameter. On input 1γ , create g, q. A signer Ei for
(i = 1, . . . , n) chooses ri ∈R Zq, and computes yi = gri mod q. It then outputs its public
key yi and the corresponding ring secret key ri that will be used to create the ring signature.

• Signing algorithm SigRing(rj; yi;C): A signer who owns the secret key rj generates a
ring signature on a message C with a public key list (g, p, yi) for (i = 1, . . . , n), where
j ∈ {1, ..., n} by performing the following steps:

1. Chooses α, ci ∈R Zq for i = {1, . . . , n} and i ̸= j.

2. Computes z = gα
∏n

i=1,i ̸=j y
ci
i mod q.

3. Computes c = H(g|q|y1| . . . |yn|C|z).
4. Computes cj = c− (c1 + . . .+ cj−1 + cj+1 + . . .+ cn) mod q.

ASSURED D3.7 PU Page 29 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Figure 4.3: Dynamic Swarm Attestation setup, where kij is a shared secret between the ith IoT
device and the jth Edge

5. Computes s = α− cjrj mod q.

6. Outputs the signature σring = (s, c1, . . . , cn).

• Verification algorithm V erRing(yi;σring, C): To verify that the tuple σring = (s, c1, . . . , cn) is
a ring signature on message C, check that

∑n
i=1 ci = H(g|q|y1| . . . |yn|C|gsyc11 .yc22 . . . ycnn

mod q).

4.1.4 Property-Based Attestation (PBA)

The key motivation behind Property-based Attestation (PBA) is to provide the ability to a com-
puting platform to attest that a device fulfills the desired (security) requirements, the so-called
‘properties’, without revealing the respective software and/or hardware information about
the attested device. ASSURED adopts PBA in order to provide attestation evidence privacy in
Swarm attestation. In PBA, the host (Edge Device) creates a ring signature σring, which is based
on a TPM’s DAA signature σDAA (to hide its identity) on the message C, which is a commitment
to the edge device configuration csE . The TPM has to create and sign C, which it then opens to-
wards the Host that is in charge of the creation of the ring signature, as shown in Figure 4.1. From
the ring signature, the Verifier is convinced that the platform has been configured with one of the
set of acceptable configuration specifications CS = {cs1, . . . , csn}, where each csi ∈ Zq, without

ASSURED D3.7 PU Page 30 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

knowing the exact Edge device configuration. CS represents the list of correct configurations that
have been circulated by the SCB (during the Edge device enrollment phase).

Note that in our protocol, the TPM is trusted by all parties, but its resources are restricted, and it
can execute only a very limited set of instructions. The host is not trusted by the Verifier, hence
the protocol has to protect evidence authentication against a malicious host. In fact, a malicious
Host cannot be prevented from disclosing its own identity and configuration csE. Therefore, in
order to achieve privacy, we have to assume that the host is honest.

Figure 4.2 presents a high-level overview of the PBA scheme from [16] that will be adopted in our
our Swarm attestation Protocol.

4.2 Towards Dynamic Topologies with Device Mobility

Another important feature that we are investigating is the application of Swarm Attestation in the
context of dynamic network topologies, as in [46], where the mobility factor of devices is
crucial and the verification of the IoT device outputs can be supported by any Edge device
in the swarm (instead of having only one root Edge device for each IoT device); i.e. we assume
a dynamic tree-based topology structure). In this regard, we need to re-design the setup phase
of our swarm attestation protocol (including both device and swarm initialization phases) to be
able to consider continuous authorization and authentication of the swarm devices. More
specifically, whenever an IoT device gets connected with another Edge Device, it should not
be required to re-create all of the cryptographic material, but it should be possible for the
Edge device to authenticate the IoT device using a predefined shared secret as shown in
Figure 4.3 that displays a Swarm of two Edge devices and six IoT devices. Each IoT device
Di for i ∈ [1, 6] in the Swarm should agree on a shared secret with each Edge device Ej for
j = [1, 2]. Whenever an IoT device wants to communicate with an Edge device, they authenticate
each other via this established shared secret kij . More details on the construction of kij will follow
in Section 4.2.1. Figure 4.4 showcases the change of topology of the Swarm and the use of the
predefined kij to authenticate the Edge and IoT devices.

4.2.1 High-level Dynamic Swarm Attestation with Evidence Privacy

In this section, we highlight the techniques that we considered in order to achieve Dynamic
Swarm Attestation with evidence privacy, starting from the Static Swarm Attestation design
presented in D3.6 [22], where only identity privacy was considered. The concrete and detailed
description of the whole protocol is presented in Section 4.3.

In the latest version of the ASSURED Swarm attestation scheme, the static Swarm Attestation
scheme presented in D3.6 was modified as follows:

• The dynamic structure of the Swarm that is achieved by establishing a Diffie-Hellman (DH)
authentication channel between each IoT and Edge device in the Swarm via a shared secret
kij . kij is created once during the execution of the Secure Enrollment phase [6] between
the ith IoT device and the jth Edge device in the Swarm for all j ∈ [1, v].

• Attestation evidence privacy is achieved by creating a ring signature that hides the actual
device configuration in a List CS, which represents the list of correct configurations cir-
culated by the SCB (during the Edge device enrollment phase). The Edge device with
its embedded TPM creates a ring signature σring to hide its configuration csE and a DAA

ASSURED D3.7 PU Page 31 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Figure 4.4: Dynamic Swarm topology

signature σDAA on the message C, which is a commitment to the edge device’s current
configuration csE. The TPM calculates and signs C, which then opens towards the Edge
device (Host) that is in charge of the creation of the ring signature as shown in Figure 4.1.

• From the ring signature described in Section 4.1.3.1, the Verifier is convinced that the Edge
device has been configured with one of the set of acceptable configuration specifications,
CS = {cs1, . . . , csn}, where each csi ∈ Zq, without knowing the exact Edge device config-
uration.

• From the DAA signature described in Section 4.1.2, the Verifier is convinced that the com-
mitment of the configuration is singed by a legitimate trusted platform TPM embedded in
the Edge device without knowing the identity of the device. Therefore, the Verifier is able to
verify the integrity of the device’s configuration. However, the Verifier cannot learn neither
the identity of the Edge device, nor its configuration.

Next, we provide a highlevel description of the Dynamic Swarm Attestation protocol interfaces
(more details will follow in Section 4.3).

Setup: During the swarm initialization protocol, the SCB certifies the long term keys yLi
for each

IoT device Di. Di then creates a set of random short-term keys (xp ∈ Zq, yp = g
xp

2), for each
integer p ∈ [1, . . . P]. These short-term keys will be later certified and kept in the records of the
SCB. This certificate is a signature from the SCB that allows the IoT one-term keys (xp, yp) to
be used by the IoT device Di for creating signatures in the future. The desired device state si of
each IoT device Di is setup by the SCB and stored in the Blockchain so that it can be accessed
by the edge devices.

Edge-IoT Join: During the Edge-IoT join inter-phase, each Ej agrees with every Di in the
swarm on a shared secret kij that is established through a secure DH channel as follows:

1. The edge device chooses a secret kj .

2. For each IoT device Di with public key yLi
, the edge device Ej with a public key Qj calcu-

lates hi = H(yLi
, Qj, si), where si is the expected correct state for the IoT device Di.

3. The edge device sends h
kj
i to the IoT device Di for some random secret kj .

ASSURED D3.7 PU Page 32 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

4. The IoT device chooses a random secret ki, calculates kji = (h
kj
i)ki , and sends hki

i to the
Edge device.

5. The Edge device calculates kij = (hki
i)

kj .

6. The shared secret is kij = kji = h
kjki
i = hkiki

i . Note that all the messages between Ej

and Di will be later exchanged via the established Diffie-Hellman channel with the agreed
shared secret kij .

7. Finally, Ej and Di keep {yLi
, Qj, kij} in their records.

Sign: To create swarm signatures, the Edge Device Ej sends a freshly generated challenge nv

(extracted by the attestation policy from the Blockchain) to the IoT Device Di, in order to initiate
the Swarm Attestation process. In this context, IoT Devices follow the following steps:

1. The IoT Device loads its certified (by the SCB during the setup phase) short-term key
(xp, yp) to create a signature.

2. The IoT Device signs a message s (current state) using it own short-term key certified key,
the IoT-Device loads kij and computes the signature σ = H(s, kij, nv)

xp mod q.

3. The IoT Device sends its signature σ together with the signed message (s, kij, nv) and the
public short-term key yp to Ej . Ej then checks that yp has been previously certified by the
SCB. If yes, it uses yp it to verify the IoT signature σ, i.e. the Edge Device checks whether
e(σ, g2) = e(H(si, kij, nv), yp) holds where si is the expected correct device state of Di (i.e.
s = si).

4. Each Edge Device collects all of its children (in the current topology) signatures using the
above procedure, and aggregates its n children signatures σ1 . . . σn, where n varies from
one Edge to another. Each Edge Device computes the aggregate signature σ[1−n] = σ1 ×
. . .× σn = H(m1)

x1 . . . H(mn)
xn where mi = (si, kij, nv).

5. Note that the verification of each σi is only performed by the Edge device Ej , which knows
the components of the message mi, whereas the aggregation verification will be re-checked
by the root Verifier that doesn’t have access to the exact message signed by the IoT Device
(i.e. mi = (si, kij, nv)) since this reveals the actual si and kij . For the verification of
the aggregation, the Verifier should only know H(mi) which perfectly hides si, since kij is
unknown to the Verifier. In addition, the Verifier cannot link the state back to the actual
signer (IoT device) when it signs different messages, since nv adds freshness to the signed
message every time.

6. The TPM commits the actual configuration of the device, then sends the commitment C to
the host (corresponding Edge device) as shown in Figure 4.2.

7. The Edge device proceeds with creating a ring signature σring to show that the committed
configuration belongs to the set acceptable configuration specifications, CS.

8. The Edge Device together with its corresponding TPM create a DAA signature on its com-
mitted configuration C and the challenge nv, then concatenates it together with the aggre-
gated IoT signatures.

9. After aggregating the IoT Devices signatures of different Edge Devices, the final swarm
signature (σring, σDAA, C, σ[1−k], H(mi)i∈[1,k], {yip}i∈[1,k]) is sent to root Verifier.

ASSURED D3.7 PU Page 33 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Verify: To verify this signature, the root Verifier checks whether the following equation holds:

e(σ[1−k], g2) = e(H(m1), y1)e(H(m2), y2) . . . e(H(mk), yk)

, where k is the number of all the IoT Devices in the swarm. The Verifier verifies the DAA sig-
natures of all the Edge Devices. The Verifier attaches the verification results to the challenge nv

used to create the swarm attestation in the Blockchain.

Trace: The tracing of Edge Devices is achieved by the Opener by using its tracing key to trace
the DAA signatures. The tracing of IoT Devices is achieved by the parent Edge Device through
the calculation of e(σ, g2) = e(H(si, kij, nv), yp) for each kij , knowing the challenge nv used for
creating the signatures. Only the parent Edge Device with the knowledge of kij , the expected
state of the IoT device si and the session nonce nv, can trace its child signature.

4.3 Architectural Details and Protocols of ASSURED Dynamic
Swarm Attestation

Here, we present a high-level overview of the main phases of the ASSURED Swarm Attestation
scheme, without focusing on the underlying cryptographic primitives. Details on all the phases
of the scheme will be provided throughout the remainder of this section. Also, the notation used
throughout the presentation of the protocol is presented in Table 4.2.

1. Setup Phase: This is a one-time offline procedure performed by the Privacy Certification
Authority (CA) to guarantee the secure deployment of the devices in the swarm. We con-
sider that each Edge Device Ej is equipped with a TC and pre-loaded with the expected
legitimate state of its associated IoT devices, and since resource-constrained IoT devices
do not support a TC, each IoT device is equipped with a long-term key whose public part
represents the IoT device’s identity. In addition, every time an IoT device joins another edge
device, the setup phase has to be executed, and the edge device is expected to know its
legitimate state. The setup phase consists of the following steps:

(a) Once IoT devices are connected to a specific edge device, each IoT device Di creates
a set of pseudonyms (i.e., short-term keys) (xp, yp).

(b) These pseudonyms will be certified by their parent Ej using the edge’s DAA Key (i.e.,
an edge device creates a DAA signature on the public pseudonym yp). The creation
of an anonymous signature using pseudonyms enables the maintenance of a ”hidden”
identity of Di when added to the aggregate signature so that the parent Ej can still
identify that it belongs to its children IoT devices.

2. Attestation Phase: This phase entails the execution of all actions related to the generation
of attestation evidence by the swarm devices, signature aggregation, and the subsequent
creation of the attestation report. It consists of the following steps:

(a) The attestation is initiated by the V that sends a challenge ch to one or more edge
devices, which will then distribute it recursively to all the swarm devices.

(b) Upon receiving this request, each Di computes the integrity measurements producing
an attestation result mi and concatenates it with ch.

(c) Once Di signs the attestation result mi using its pseudonym (certified by its parent
edge device during the setup phase), it sends the signature to Ej .

ASSURED D3.7 PU Page 34 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

(d) Upon receiving the signatures from all children IoT devices, each Ej verifies their
attestation result and signatures and aggregates only the valid signatures signing them
with its DAA Key.

(e) Afterwards, each edge device performs its attestation using the zero-knowledge proofs
in the DAA scheme, creates its DAA signature, and concatenates it with the aggre-
gated IoT signatures.

(f) After aggregating all the DAA and IoT devices’ signatures from different Edge devices,
the final swarm signature is sent to the Verifier.

3. Verification Phase:

(a) After obtaining the Swarm Attestation report, the Verifier V verifies DAA signatures
and checks the total number of IoT signatures to ensure that all IoT devices have been
included in the report. Note that, in the ASSURED SA scheme, each Ej validates the
attestation results and signatures received from IoT devices Di.

(b) In the case of a non-valid DAA signature or a missing IoT signature, V claims that the
swarm is not trusted and contacts the Opener to trace the compromised devices.

(c) To enable the Opener to trace the identity of the compromised edge devices (i.e., the
DAA signatures), the traceability feature of the Enhanced DAA scheme enables the
Opener to use a tracing key in order to identify the edge device with a failed DAA
signature.

(d) In case an edge device is trusted but one of its children IoT devices is compromised,
in order to identify the compromised IoT device, the Opener performs tracing through
the parent edge device that knows the corresponding IoT long-term key linked to the
certified IoT pseudonyms.

(e) When an edge device is compromised, the Opener cannot verify the trustworthiness
of the attestation evidence of the IoT devices as only the parent edge devices have
prior knowledge about the expected legitimate state of IoT devices. However, the
verification of the IoT signatures is still possible, thanks to the construction of the
pseudonyms, which does not allow an Edge device to sign on behalf of its children.

In the following, we elaborate on all the aforementioned phases of the ASSURED SA protocol.

4.3.1 Setup Phase

The setup phase encompasses the formal key generation of the Privacy Certification Author-
ity (Privacy CA), the enrollment of edge devices Ej when the DAA Attestation Key is gener-
ated (and certified by the Privacy CA), and the enrollment of IoT devices Di when long-term
and short-term key pairs are created by the IoT devices and certified by the SCB. Specifically,
the setup phase starts with the Privacy CA generating her key pairs x, y ← Zq, sets X = gx2 and
Y = gy2 . The Privacy CA proves that this key is well formed and registers its key (X, Y, πipk).

4.3.1.1 Edge Device Enrollment

The Edge Device Enrollment process starts from an edge device Ej , where j ∈ [1, v], that sends
an enrollment request to the Privacy CA for joining the target service graph chain. The Privacy
CA chooses a fresh nonce ρ and sends it to Ej , who forwards it to its TPM Mj . Then, the TC

ASSURED D3.7 PU Page 35 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

chooses a secret key tsk ← Zq, sets its public key Qj = gtsk1 , and computes π1
j as a proof of

construction of Qj . Once Mj sends (Qj, π
1
j) to the Privacy CA, it verifies π1

j to check whether
the Edge device is eligible to join, i.e., the Edge device DAA key has not been registered before.
Upon a successful validation, the Privacy CA picks a random r ← Zq and generates Ej ’s DAA
credential (a, b, c, d) by setting a = gr1, b = ay, c = axQrxy

j and d = Qry
j . In addition, the Privacy

CA generates a proof πCA
j on the credential construction.

4.3.1.2 Generating the Tracing Keys by the Opener

Each TPM Mj sets Tj = gtsk2 and computes π2
j as a proof of construction of Tj . Mj sends

(Tj, Qj, π
1
j , π

2
j) via Ej to the Opener. The Opener verifies π1

j and π2
j and makes sure that Tj and

Qj link to the same TC by checking if the following holds:

e(Qj, g2) = e(g1, Tj) (4.1)

To convince the Opener that the key Tj correct,Mj may also send to the Opener the DAA creden-
tial of Qj issued by the Privacy CA. After receiving all Edge devices Tj , for all j ∈ [1, v], and their
corresponding public keys Qj , the Opener sets its tracing key T as follows: T = {T1, T2, . . . , Tv}
and keeps the (Qj, Tj) pairs in its records for all j ∈ [1, v].

4.3.1.3 IoT Device Enrollment

Each IoT device is equipped with a long-term key pair (xL, yL) whose public part yL = g1
xL

represents the IoT device’s identity and is certified by a trusted authority. Let πL represent a proof
of construction of yL = g1

xL . The enrollment of IoT devices consists of the following steps:

1. The SCB certifies each of the IoT long-term key by creating a signature σL
DAA on yL.

2. Once the long-term key is certified, each IoT device creates short-term random keys (xp ∈
Zq, yp = g

xp

2 , πp), for each integer p ∈ [1, . . . P] where πp is a proof of construction of yp and
P is the total number of pseudonyms that will be certified by the SCB for each IoT Device.
The certification on the short-term keys will be sent back to the IoT Devices.

In ASSURED, the setup phase is an initial offline procedure that is performed only once before the
attestation itself is performed. In particular, this phase aims to securely deploy swarm devices
and is performed by the Privacy Certification Authority (Privacy CA). During this phase, it is
ensured that each edge device is equipped with a Trusted Component. The Edge devices Ej

establish a secure DH channel and share a secret kij with every IoT device Di in the swarm as
follows:

1. The Edge device chooses a secret kj .

2. For each IoT device Di with public key yLi
, the Edge device Ej with a public key Qj calcu-

lates hi = H(yLi
, Qj, si) where si is the expected correct state for the IoT device Di.

3. The Edge device sends h
kj
i to the IoT device Di for some random kj .

4. The IoT device chooses a random secret ki, calculates kji = (h
kj
i)ki and sends hki

i to the
Edge device.

5. The Edge device calculates kij = (hki
i)

kj .

ASSURED D3.7 PU Page 36 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

6. The shared secret is kij = kji = h
kjki
i = hkiki

i . Note that all the messages between Ej

and Di will be later exchanged via the established Diffie-Hellman channel with the agreed
shared secret kij .

7. Finally, Ej and Di keep {yLi
, Qj, kij} in their records.

4.3.2 Attestation Phase

The Swarm Attestation process is initiated by a Verifier V who sends a challenge nv to an Edge
device, which will then distribute it recursively to all devices in the swarm. The first devices that
perform attestation are the IoT devices, which sign their attestation results and report them to
their parent edge devices.

4.3.2.1 IoT Device Signature

When an IoT device receives an attestation challenge nv, it will perform the attestation process,
concatenate the attestation result with the challenge nv, and sign the attestation response (i.e.,
message mi = (s, kij, nv)) using its own pseudonym (i.e, short-term key previously certified by
the SCB during the enrollment procedure in the setup phase). The the IoT device computes its
signature as follows:

σp = H(mi)
xp mod q (4.2)

Next, the IoT device sends its signature σ together with yp to its parent edge, which will check that
yp is certified by the SCB and verify the signature σ and determine whether the following holds:

e(σ, g2) = e(H(mi), yp) (4.3)

Assume that n IoT children devices successfully pass the signature verification. In this case, the
edge device aggregates its n children’s signatures σ1, . . . σn in an aggregated signature σ[1−n] =
σ1 × . . . × σn = H(m1)

x1 . . . H(mn)
xn . When the attestation of an IoT device is unsuccessful or

the attestation of a given IoT device is missing, then the edge device will not consider that IoT
device in the aggregation.

4.3.2.2 Edge Device Signature & Traceability

The creation of a traceable DAA signature starts with an edge device Ej that decides a basename
bsn as a random string {0, 1}∗ to trace and control linkability between two DAA signatures. To sign
a message µ with respect to the basename bsn, the edge device re-randomizes its credential by
choosing a random τ ← Zq, sets (a′, b′, c′, d′)← (aτ , bτ , cτ , dτ), and then sends (µ, bsn, τ) to the
Mj . Next,Mj checks that b′ = bτ and d′ = dτ , sets nym = (bsn)tsk, and calculates a Signature
based Proof of Knowledge SPK on the TPM’s secret key tsk and the device’s credential on
(µ, bsn) as

SPK{tsk : nym = H(bsn)tsk, d′ = b′tsk}(bsn, µ) (4.4)

The DAA signature is (a′, b′, c′, d′, SPK, nym).
The TPM commits the actual configuration of the device, then send the commitment C to the
host (corresponding Edge device) as in Figure 4.2. The Edge device proceeds with creating a
ring signature σring to show that the committed configuration belongs to the set of acceptable
configuration specifications, CS. The Edge Device together with its corresponding TPM create
a DAA signature on its committed configuration C and the challenge nv, then concatenates it
together with the aggregated IoT signatures.

ASSURED D3.7 PU Page 37 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Each Edge Device aggregates its the IoT Device signatures and creates its own DAA on the
commitment of its configuration C and ring signature as previously discussed. The final swarm
signature is (σring, σDAA, C, σ[1−k], H(mi)i∈[1,k], {yip}i∈[1,k]), where k is the total number of IoT
devices in the swarm, is sent to the root Verifier.

4.3.3 Verification Phase

After receiving an attestation report, the Verifier checks the DAA signature of each Edge device
σ = (a′, b′, c′, d′, nym, SPK) on a message µ w.r.t. a basename bsn that is published with the
signature. In particular, the Verifier verifies SPK w.r.t. (µ, bsn) and nym, and checks that a′ ̸= 1,
e(a′, Y) = e(b′, g2), e(c′, g2) = e(a′d′, X). In order to check the aggregate result, the Verifier
checks if the following holds:

e(σ[1−k], g2) = e(H(m1), y1)e(H(m2), y2) . . . e(H(mk), yk) (4.5)

where k is the total number of IoT devices in the swarm. If the aggregate result has less than k
IoT aggregated signatures or includes any failed signature, then the Verifier claims that the swarm
attestation has failed. Further, the Verifier can interact with the Opener to initiate the tracing of
the device with a failed attestation.

4.3.3.1 Link

When a Verifier has access to different swarm attestation reports, it can check if the DAA sig-
natures originate from the same edge devices or not. Specifically, the Verifier checks if both
signatures are signed under the same basename known by the Verifier.

More formally, given σ1 = (a′1, b
′
1, c

′
1, d

′
1, nym1, π1) and σ2 = (a′2, b

′
2, c

′
2, d

′
2, nym2, π2) on a mes-

sage µ w.r.t. a basename bsn. In this setting, the output is 1 when both signatures are valid and
nym1 = nym2, otherwise the output is 0.

4.3.3.2 Tracing/Opening

In ASSURED, traceability consists of two levels: (i) tracing an aggregate attestation signature
to the edge device and (ii) tracing a failed attestation to the origin IoT device. We add a
traceability requirement to the existing DAA scheme [11] in order to obtain a novel Traceable
DAA protocol that meets our Swarm Attestation security and privacy requirements. The first
level of swarm attestation traceability relies on the traceability of the DAA signature that can be
performed by the Opener using its tracing key.

Specifically, starting with a DAA signature σDAA with a corresponding link token nym = H(bsn)tsk,
the Opener uses its tracing key T = {T1, T2, . . . , Tv} to check the following equation:

e(nym, g2) = e(H(bsn), Tj) ∀ j ∈ [1− v] (4.6)

A successful verification allows the Opener to recover the TC public key Qj corresponding to Tj

in its records, as it was previously explained during the setup of the Tracing Keys by the Opener.

Once the identity of the edge device is recovered, it is easy for the Edge device to recover any
of the long-term public keys of its children that are certified by this Edge device relying on its
records. In particular, The tracing of IoT Devices is achieved by the parent Edge Device through
the calculation of e(σ, g2) = e(H(si, kij, nv), yp). Only the parent Edge Device with the knowledge

ASSURED D3.7 PU Page 38 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

of kijs for all the IoT devices, the expected state of the IoT devices si, and the session challenge
nv, can trace its child signature. Note that in dynamic network topologies, only the Edge device
that acted as the parent of the IoT device when creating a signature can trace this signature back
to the IoT device with the particular knowledge of kij .

4.3.3.3 Revocation

Any Revocation Authority (RA), which may also be the Opener, can remove misbehaving edge
devices without revealing the edge device’s identity. The motivation behind the revocation scheme
is to be able to deactivate any DAA credential of an edge device, created during its enroll-
ment [44]. We assume that a Revocation Authority RA has access to a set of revoked DAA
keys KRL. The Revocation Authority checks that the DAA key used to create the DAA signature
is not in the revocation list. This check is performed by simply verifying that the following holds:
∀ tsk∗ ∈ KRL, nym ̸= H(bsn)tsk

∗
.

The ASSURED dynamic protocol also supports revocation of the IoT devices by their parent edge
device. We assume that the Edge device has access to a set of IoT revoked keys, referred to
as the IoT-Key Revocation List IoT-KRL, based on which the Edge device checks that each
of its children IoT signatures were not produced by any key in IoT-KRL. Relying on the trust of
the edge devices and the accuracy of the updated IoT-KRL, Edge devices would also be able to
correctly revoke the IoT devices whose keys are in IoT-KRL.

ASSURED D3.7 PU Page 39 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Chapter 5

Security Analysis of the ASSURED Swarm
Attestation Protocol

5.1 Swarm Attestation Protocol Security Analysis

5.1.1 Methodology

We employ the Universal Composability (UC) model, based on which we aim to equate the real-
world network topology to an ideal-world model, both indistinguishable to each other from the
perspective of an adversary, in which it is possible to break down the proposed scheme into
simpler building blocks with provable security. Specifically, the security definition of the ASSURED
Swarm Attestation protocol is given with respect to an ideal functionalityF . In UC, an environment
E should not be able to distinguish, with a non-negligible probability, between the two worlds:

1. The real world, where each party Ej or Di (corresponding to the Edge and IoT devices,
respectively) executes its assigned part of protocol Π. The network is controlled by an
adversary A that communicates with the environment E .

2. The ideal world, in which all parties forward their inputs to a trusted entity, called the ideal
functionality F , which internally performs all the required tasks and creates the parties’
outputs in the presence of a simulator S. This essentially translates to the Edge and IoT
devices sending their outputs to F , which is then able to perform all operations in a trust-
worthy manner, and provide the compiled output.

5.1.2 Ideal Functionality Algorithms for the Dynamic Swarm Attestation
with Evidence Privacy

We define the algorithms that will be used inside the ideal functionality F . These algorithms
will be called by F in our security model to provide key generation, DAA signatures, and ring
signatures with their verification (as in real world protocol) on behalf on honest parties, as well
as additional algorithms that are used by F to identify the signer in our model for linking and
revocation purposes. These algorithms are defined as follows:

Kgen(1λ): A probabilistic algorithm that receives as input a security parameter λ and generates
keys tsk and dsk for honest TCs and IoT devices respectively. This is part of the SETUP phase

ASSURED D3.7 PU Page 40 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

for certifying the correct creation of the DAA key of the edge device and the pseudonyms of IoT
devices.
Sign: A probabilistic algorithm used for honest TCs and IoT devices in order to create the type
of signature required by the corresponding operation. It consists of the following sub-algorithms:

1. sigDAA(tsk, µ, bsn): On input of a secret key tsk, a message µ and a basename bsn, it
outputs a DAA signature σDAA.

2. sigring(C, r): On input of a random secret key r, a message C, it outputs a ring signature σr.

3. sigIoT(dsk,m): On input of a secret key dsk for an IoT device Di and a message m, it
outputs a signature σi.

4. aggregate(σ1, σ2, . . . , σc): On input σ1, σ2, . . . , σc, it outputs σ[1−c].

Verify: A deterministic algorithm that is used in the VERIFY interface, and outputs a binary result
on the correctness of a signature. It consists of two sub-algorithms:

1. verDAA(σDAA, µ, bsn): On input of a signature σDAA, a message µ and a basename bsn, it
outputs f = 1 if the signature is valid, f = 0 otherwise.

2. verring(C, σr): On input of a ring signature σr, and message C, it outputs f = 1 if the
signature is valid, f = 0 otherwise.

3. verIoT(σi,m): On input of a signature σi, a message m, it outputs f = 1 if the signature is
valid, f = 0 otherwise.

Link: (σ1, µ1, σ2, µ2): A deterministic algorithm that will be used in the LINK interface, which
checks if two signatures originate from the same device. In case of DAA signature linkability
checks, an extra parameter bsn is required as an input. It outputs 1 if both σ1 and σ2 were gener-
ated by the same device, and 0 otherwise.

Identify: A deterministic algorithm that will be used to ensure consistency with the ideal func-
tionality F ’s internal records, by connecting a signature to the key used in order to generate it. It
consists of two sub-algorithms:

1. identifyDAA(tsk, σDAA, µ, bsn): It outputs 1 if a key tsk was used to produce a signature
σDAA, and 0 otherwise.

2. identifyIoT(dsk, σi,m): It outputs 1 if a key dsk was used to produce a signature σi, and 0
otherwise.

5.1.3 Universal Composability Security Model

We now explain the interfaces of the proposed ideal functionalityF in the UC framework based on
the functionality originally proposed in [11]. The UC framework allows us to focus the analysis on
a single protocol instance with a globally unique session identifier sid . F uses session identifiers
of the form sid = (I, sid′) for some issuer I and a unique string sid ′. In the real-world, these
strings are mapped to the issuer public key, and all parties use the sid to link their stored key
material to the particular issuer. We define the edge device JOIN, IoT device JOIN, and SIGN

ASSURED D3.7 PU Page 41 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

sub-session identifiers jsid, jsid′ and ssid, respectively, to distinguish any join and sign sessions
that might run in parallel.

We define two “macros” to determine if a secret key key is consistent with the internal functionality
records or not. This is checked at several places in the ideal functionality interfaces and also
depends on whether key belongs to an honest or corrupt party. The first macro CheckkeyHonest
is used when the functionality stores a new key that belongs to an honest party, and checks that
none of the existing valid signatures are identified as belonging to this party. The second macro
CheckkeyCorrupt is used when storing a new key that belongs to a corrupt party, and checks that
the new key does not break the identifiablity of signatures, i.e., it checks that there is no other
known key∗, unequal to key, such that both keys are identified as the owner of a signature. Both
functions output a bit b, where b = 1 indicates that the new key is consistent with the stored
information, whereas b = 0 signals an invalid key. Finally, we assume that the host Hj represents
the same entity as Ej . Thus, Mj and Ej correspond to the TC and the host respectively in an
edge device j.

SETUP

1. On input (SETUP, sid) from issuer I, output (SETUP, sid) to S.

2. On input (ALG, sid , Sign, Verify, Link, Identify, Kgen) from S,

• Check that Verify, Link and Identify are deterministic.

• Store the algorithms and output (SETUPDONE, sid) to I.

• Define a random static list ConfigurationList that hides the hash of correct config-
urations

Edge-JOIN

1. On input (JOIN, sid , jsid, Mj) from host Ej , create a join session record ⟨jsid,Mj, Ej⟩
and output (JOINPROCEED, sid , jsid,Mj) to I.

2. On input (JOINPROCEED, sid , jsid) from I, output
(JOINCOMPLETE, sid , jsid) to S.

3. On input (JOINCOMPLETE, sid , jsid, tsk) from S.

• Abort if I orMj is honest and a record ⟨Mj, ∗, ∗⟩ ∈ Edge Members already exists.

• IfMj and Ej are honest, set tsk ← ⊥.

• Else, verify that the provided tsk is eligible by checking

– CheckkeyHonest(tsk) = 1 ifMj is honest and Ej is corrupt, or
– CheckkeyCorrupt(tsk) = 1 ifMj is corrupt and Ej is honest.

• Insert ⟨Mj, Ej, tsk⟩ into Edge Members and output (JOINED, sid , jsid) to Ej .

IoT-JOIN

1. On input (JOIN, sid , jsid′, Di) from IoT device Di, create a join session record ⟨jsid′, Di, Ej⟩
for all j ∈ [1, v] and output (JOINPROCEED, sid , jsid′, Di) to Ej .

2. On input (JOINPROCEED, sid , jsid′) from Ej for all j ∈ [1, v], output
(JOINCOMPLETE, sid , jsid′) to S.

ASSURED D3.7 PU Page 42 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

3. On input (JOINCOMPLETE, sid , jsid′, dsk, wij) from S for all j ∈ [1, v].

• Abort the join for (Ej, Di), if there exists j ∈ [1, v] where Ej or Di is honest and a
record ⟨Di, ∗, ∗⟩ ∈
IoT Members already exists.

• If Ej and Di are honest, set wij ← ⊥.

• If Di is honest, set dsk ← ⊥.

• Else, verify that the provided dsk is eligible by checking

– CheckkeyHonest(dsk) = 1 if Di is honest, or
– CheckkeyCorrupt(dsk) = 1 if Di is corrupt.

• Insert ⟨Di, Ej, dsk, wij⟩ into IoT Members for all j ∈ [1, v] and output (JOINED, sid ,
jsid′, Di) to Ej .

IoT-SIGN

1. For all i ∈ [1, c], where c is the number of children for an edge device Ej . On input
(SIGN, sid , ssid,m) from Di. If Ej is honest and no entry ⟨Di, Ej, wij, ∗⟩ in IoT Members,
abort. Else, create a sign session record ⟨ssid,Di,m⟩ and output (SIGNPROCEED, sid ,
ssid) to Di.

2. On input (SIGNPROCEED, sid , ssid, m) from Di for all i ∈ [1, c]. Output
(SIGNCOMPLETE, sid , ssid) to S.

3. On input (SIGNCOMPLETE, sid , ssid, σi,m,σ[1−c]) from S.

• For each i ∈ [1, c], if Di is honest, ignore the adversary’s signature σi and internally
generate the signature for a fresh or established dsk:

– Retrieve dsk from ⟨Di, dsk⟩ ∈ IoTDomainKeys . If no such dsk exists, set dsk ←
Kgen().

– Check CheckkeyHonest(dsk) = 1 and store ⟨Di, dsk⟩ in IoTDomainKeys

– Compute signature as σi ← sigIoT(dsk,m) and check verIoT(σi, m) = 1.
– Check identifyIoT(σi, m, dsk) = 1 and check that there is no D′ ̸= Di with key dsk′

registered in IoT Members or IoTDomainKeys with identifyIoT(σi, m, dsk′) = 1.
– Calculate σ[1−c] ← aggregate(σ1, σ2, . . ., σc) if all σi are honestly generated.

• Store ⟨σi,m,Di⟩ in IoTSigned.

• Output (SIGNATURE, sid , ssid, σi, wij) to Ej .

• Output (SIGNATURE, sid , ssid, σ[1−c], σi∈[1,c]) to Ej .

Edge SIGN

1. On input (SIGN, sid , ssid, Mj , bsn) from host Ej . If I is honest and no entry ⟨Mj, Ej, ∗⟩
exists in Edge Members, abort. Else, Create a sign session record ⟨ssid,Mj, Ej, bsn⟩ and
output (SIGNPROCEED, sid , ssid, bsn) toMj .

2. On input (SIGNPROCEED, sid , ssid) fromMj . Output
(SIGNCOMPLETE, sid , ssid) to S.

ASSURED D3.7 PU Page 43 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

3. On input (SIGNCOMPLETE, sid , ssid, σDAA, C, σr) from S.

• IfMj and Ej are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established tsk, and a fresh ring signing key r:

– If bsn ̸= ⊥, retrieve tsk from ⟨Mj, bsn, tsk⟩ ∈ EdgeDomainKeys for (Mj, bsn). If
no such tsk exists or bsn = ⊥, set tsk ← Kgen(). Check CheckkeyHonest(tsk) = 1
and store ⟨Mj , bsn, tsk⟩ in EdgeDomainKeys.

– C ←Randomly configurationList (Configuration Privacy) (based on the hiding of
the commitment scheme) then compute the DAA and ring signatures by running
the signing algorithms σDAA ← sigDAA(tsk, C, bsn) and σr ← sigring(r, C) .

– Check verDAA(σDAA, C, bsn) = 1 and verring(σr, C)=1 .
– Check identifyDAA(σDAA, C, bsn, tsk) = 1 and check that there is no M′ ̸= Mj

with key tsk′ registered in Edge Members or EdgeDomainKeys with
identifyDAA(σDAA, C, bsn, tsk

′) = 1.

• If Ej andMj are honest, store ⟨σDAA, C, σr, bsn,Mj , Ej⟩ in EdgeSigned.

• Output (SIGNATURE, sid , ssid, σDAA, σr) to Ej .

DAA-VERIFY: On input (VERIFY, sid , C, σr, bsn, σDAA, KRL) from some party V .

• Retrieve all pairs (tskj,Mj) from ⟨Mj, ∗, tskj⟩ ∈ EdgeDomainKeys where identifyDAA(σDAA,
C, bsn, tskj) = 1. Set f = 0 if at least one of the following conditions hold:

CHECK1. C /∈ configurationList (Evidence authentication)(based on the binding of the com-
mitment scheme)

CHECK2. More than one key tskj was found.

CHECK3. I is honest and no pair (tskj ,Mj) was found.

CHECK4. There is an honestMj but no entry ⟨∗, C, σr, bsn,Mj⟩ ∈ EdgeSigned exists.

CHECK5. There is a tsk∗ ∈ KRL where identifyDAA(σDAA, C, bsn, tsk∗) = 1 and no pair (tskj ,
Mj) for an honestMj was found.

• If f ̸= 0, set f = verDAA(σDAA, C, bsn) and verring(σr, C).

• Add ⟨σDAA, C, σr, bsn, KRL, f⟩ to VerResults, output (VERIFIED, sid , f) to V .

IoT-VERIFY/ Trace: On input (VERIFY, sid , m, σi, IoT-KRL) from some party V .

• Retrieve all pairs (dski, Di, wij) from IoT Members and
⟨Di, ∗, dski⟩ ∈ IoTDomainKeys where identifyIoT(σi, m, dski) = 1. Set f = 0 if at least one
of the following conditions hold:

CHECK1. More than one key dski was found.

CHECK2. If the parent edge Ej is honest and no pair (dski, Di, wij) was found.

CHECK3. There is an honest Di but no entry ⟨∗,m,Di, wij⟩ ∈ IoTSigned exists.

CHECK4. There is a dsk∗ ∈ IoT-KRL where identifyIoT(σi,m, dsk∗) = 1 and no pair (dski, Di)
for an honest Di was found.

• If f ̸= 0, set f = verIoT(σi,m).

ASSURED D3.7 PU Page 44 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

• Add ⟨σi,m, IoT-KRL, f⟩ to IoTVerResults, output
(VERIFIED, sid , f) to V .

DAA-LINK: On input (LINK, sid , σDAA, σ′
DAA, C ′, C, bsn) from some party V with bsn ̸= ⊥.

• Output ⊥ to V if at least one signature tuple (σ, bsn) or (σ′, bsn) is not valid (verified via the
verify interface with KRL = ∅).

• For each tskj in and EdgeDomainKeys compute
bj = identifyDAA(σ, bsn, tskj) and b′j = identifyDAA(σ

′, bsn, tskj) and do the following:

– Set f = 0 if bj ̸= b′j for some j.

– Set f = 1 if bj = b′j = 1 for some j.

• If f is not defined yet, set f = link(σ, σ′, bsn).

• Output (LINK, sid , f) to V .

5.2 Swarm Attestation Protocol Security Proof

As we have previously defined the UC security model of the ASSURED Swarm Attestation proto-
col, we can now proceed with the security proof of the designed scheme, leveraging the Discrete
Logarithm (DL) and Decisional Diffie-Hellman (DDH) assumptions. This can be expressed as
follows:

Definition 1. (The Discrete Logarithm (DL) assumption [45]) Given y ∈ G, find an integer x such
that gx = y .

Definition 2. (Decisional Diffie-Hellman (DDH) assumption [7]) Given ga and gb, for random and
independent integers a, b ∈ Zq, a computationally bounded adversary cannot distinguish gab from
any random element gr in the group.

Based on the above definitions, the security of the Swarm Attestation scheme is proved using the
UC model. The method of reduction to absurdity is used to prove the scheme’s security. Since
the security of our scheme depends on the Elliptic Curve Decisional Diffie–Hellman problem,
reducing the hardness of the ECDDH assumption is made.

High level description of the security proof

We start with the real world protocol execution in Game 1. In the next game, we construct one
entity C that runs the real world protocol for all honest parties. Then we split C into two pieces,
an ideal functionality F and a simulator S that simulates the real world parties. Initially, we
start with an “empty” functionality F . With each game, we gradually change F and update S
accordingly, moving from the real world to the ideal world, and culminating into the full protocol F
being realized as part of the ideal world, thus, proving our proposed security model presented in
Section 5.1.3. The endmost goal of our proof is to prove the indistinguishability between Game
1 and Game 16, i.e., between the complete real world and the fully functional ideal world. This
is done by proving that each game is indistinguishable from the previous one starting from Game
1 to reach Game 14. As aforementioned, our proof starts with setting up the real world games
(Game 1 and Game 2), followed by introducing the ideal functionality in Game 3. At this stage

ASSURED D3.7 PU Page 45 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

the ideal functionality F only forwards its inputs to the simulator who simulates the real world.
From Game 4 onward, F starts executing the setup interface on behalf of the Issuer. Moving on
to Game 5, F handles simple V ERIFICATION and LINKING checks without performing
any detailed checks at this stage; i.e., it only checks if the device belongs to a revocation list
separately. In Games 6-7, F executes the JOIN interface while performing checks to keep
the consistency of registered keys. It also adds checks that allow only the devices that have
successfully been enrolled to create signatures. Games 8-9 proves the anonymity, both for id and
the evidence, of the protocol by letting F handle the sign queries on behalf of honest devices
through creating Swarm signatures using freshly generated random keys instead of running the
sign algorithm using the device’s signing key. At the end of this game we prove that, relying on
DDH and DL constructions, an external environment will notice no change from previous games
where the real world sign algorithm was executed. Now moving to Games 10 - 15, we let F to
perform all other checks that are explained in our UC model (§ 5.1.3).

We use the “≈” sign to express games’ indistinguishability. F and S. Each of these games
contains further checks that guarantee a desired security requirement, while proving game to
game indistinguishability. At the end of the proof, we showcase that our real protocol guarantees
the desired security requirements that the ideal world provides.

Proof. Game 1 (SWARM Real-World): This is the real world protocol.

Game 2 (Transition to the Ideal World): An entity C is introduced. C receives all inputs from
the honest parties and simulates the real world protocol for them. This is equivalent to Game 1,
as this change is invisible to E .

Game 3 (Transition to the Ideal World with Different Structure): We now split C into two parts,
F and S, where F behaves as an ideal functionality. It receives all the inputs and forwards them
to S, who simulates the real world protocol for honest parties and sends the outputs to F . F then
forwards these outputs to E . This game is essentially equivalent Game 2 with a different structure.

Game 4 (F handles the setup): F now behaves differently in the setup interface, as it stores
the algorithms defined in Section 5.1.2. F also performs checks and ensures that the structure
of sid, which represents the issuer’s unique session identifier defined in Section 5.1.3, is correct
for an honest I, and aborts if not. When I is honest, S will start simulating it. Since S is now
running the Issuer, it knows its secret key. In case I is corrupt, S extracts I ’s secret key from
πipk and proceeds to the setup interface on behalf of I. By the simulation soundness of πipk, this
game transition is indistinguishable for the adversary. Game 4 ≈ Game 3.

Game 5 (F handles the verification and linking): F now performs the verification and linking
checks instead of forwarding them to S. There are no protocol messages and the outputs are ex-
actly as in the real world protocol. However, the only difference is that the verification algorithms
that F uses (namely verDAA and verIoT) do not contain revocation checks, so knowing KRL and
IoT-KRL for corrupt edge and IoT respectively, F can perform these checks separately and the
outcomes are equal, Game 5 ≈ Game 4.

Game 6 (F handles the join/ Edge-IoT authentication Channel (Dynamic Topology)): The
join interface of F is now changed. Specifically, F stores the members that joined in its records.
If I is honest, then F stores the secret keys tsk and xL and wij extracted from π1 and πL by S
for corrupt edge and/or IoT devices, respectively. F sets the tracing key for each honest edge

ASSURED D3.7 PU Page 46 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

device (as it already knows its key tsk) or calculates it from the extracted tsk (for corrupt edge
devices).Only in the case where the edge or the IoT device is already registered in Edge Members

or IoT Members, F will abort the protocol. However, I and the parent edge device Ej have
already tested this case before continuing with the query JOINPROCEED, thus, F will not abort.
Knowing tsk and all children dsks, F now performs the IoT-Edge join.

If Ej and Di are honest, F safely chooses a random masking term r and calculates Rij = hr
j of

kij and adds ⟨Di, Ej, dsk, Rij⟩ into IoT Members. If Ej or Di is corrupt, F knows wij extracted
by the simulator. We argue that no external environment can distinguish Rij for honest devices
from wij . Suppose that an environment can distinguish between wij = h

kikj
j from Rij = hr

j . This
breaks the Decisional Diffie–Hellman DDH problem. Therefore, F and S can interact to simulate
the real world protocol in all cases. Due to the simulation soundness of π1 and πL and the hard-
ness of the Decisional Diffie-Hellman (DDH) problem, Game 6 ≈ Game 5.

Game 7 (Further Join-Checks): If I is honest, then F only allows the devices that joined to sign.
An honest edge device will always check whether it joined with a TC in the real world protocol,
so there is no difference for honest edge devices. In the case that an honestMj performs a join
protocol with a corrupt edge device Ej and an honest Issuer, S will make a join query with F , to
ensure thatMj and Ej are in Edge Members. Also, only joined IoT devices with certified public
keys can create signatures. This will be checked by the parent edge device before verifying its
children IoT signatures. Therefore Game 7 ≈ Game 6.

Game 8 (F handles the sign/ Anonymity) (Simulating an edge device without knowing its se-
cret): In this game, F creates anonymous signatures for honest edge devices by running the
algorithms defined in the setup interface. Let us start by defining Game 7.t.t′. In this game, F
handles the first t′ signing inputs ofMt for some integer t, and subsequent inputs are then for-
warded to S. For j < t, F handles all the signing queries withMj using algorithms defined in
Section 5.1.2. For j > t, F forwards all signing queries withMj to S, who creates signatures as
before. Next, from the definition of Game 7.t.t′, we note that Game 7.0.0=Game 6. For increasing
t′, Game 7.t.t′ will eventually become equal to Game 7.t+1.0. This is because there can only be
a polynomial number of signing queries to be processed. Therefore, for large enough t and t′, F
handles all the signing queries of all TC’s, and Game 7 is indistinguishable from Game 7.t.t′.

Next, we want to prove that Game 7.t.t′ + 1 is indistinguishable from Game 7.t.t′ (i.e. we want
to prove that an external environment cannot distinguish when F internally handles the signing
queries instead of merely forwarding them to S for a TC Mt). Suppose an environment can
distinguish a signature (created by an honest edge device with a secret signing key tsk) from a
signature constructed by the same party but with a randomly chosen fresh tsk. Then we can
use that environment to break a Decisional Diffie–Hellman DDH instance α, β, γ by simulating
the JOIN protocol: The first signature can be simulated using the unknown logg1(α) as tsk while
for the second signature we can use the unknown logβ(γ) as tsk. In the reduction, we have to be
able to simulate the TC without knowing the real TC’s tsk, but merely based on α = gtsk1 . A TC
uses tsk to set Q ← gtsk1 in the JOIN protocol; to do proofs π1 in joining and π in signing; and to
compute pseudonyms. In the simulation, we set Q← α and we simulate all proofs π1 and π. For
pseudonyms, the power over the random oracle is used: S chooses H1(bsn) = gr1 for r ← Zq,
and sets nym ← αr = H1(bsn)

tsk without knowing tsk. Anonymity of the IoT devices is also
achieved against external Verifiers through the use of fully random pseudonyms that don’t reveal
the identities of the IoT devices. Thus, starting with an IoT pseudonym, V cannot tell the identity
of the IoT device that generated this pseudonym unless it collaborates with the edge device. It
is easy to see that an external environment cannot distinguish between an honest IoT signature

ASSURED D3.7 PU Page 47 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

from a signature, by the same party, but with a randomly chosen fresh dsk in every signature
(Game 8 ≈ Game 7, except for a negligible probability).

Game 9 (F handles the sign/Evidence Privacy): F further manage the sign queries. In this
game, F provides a signature by simulating the Edge devices without knowing their configura-
tion. If the edge device is honest, F samples a random C ←Randomly configurationList (any
random element from the masked correct configurations) and creates signature on C without
knowing the the devices secrets as in the previous game. If the Edge device is corrupt, F knows
the value of C extracted by the the simulator where C = gCSE

1 gr2 for some random r ∈ Zq. An
environment E cannot distinguish C for honest devices provided by F from the C extracted from
the simulator. This is achieved in real world protocol due to the perfect hiding of the commitment
scheme used in [16].

F creates a ring signature on behalf of honest Edge devices. he ring signature is created
using a uniformly random r and C. The ring signature leaks no information about C, other that
C ∈ configurationList, F creates the ring signature using the algorithm sigring(r, C).

If the edge device is corrupt, then CSE /∈ configurationList. S proceeds with creating a ring
signature on CSE as in the real world protocol. The only thing that E learns is that, for honest
edge devices, its configuration belongs to a dummy list configurationList without knowing the
exact value of the real configuration since C is a masking term of the real configuration. For cor-
rupt devices, E can notice that CSE is not in the correct configuration, which is perfectly deduced
in the real-world scenario due to the privacy of the ring signature in [16]. (Game 9 ≈ Game 8,
except for a negligible probability).

Game 10 (Traceability): When storing a new tsk or dsk, F checks if CheckkeyHonest = 1 or
CheckkeyCorrupt = 1 for both keys. If the device is corrupt, F checks that CheckkeyCorrupt = 1
for the keys tsk or/and dsk that the simulator extracted. This check prevents the adversary
from choosing different keys. There exists only a single tsk for every valid signature where
identifyDAA(σ, µ, bsn, tsk) = 1, and only a single dsk for every valid signature where identifyIoT(σi,
m, dsk) = 1 for each edge and IoT device, respectively, thus this check will never fail. For keys
of honest devices, F verifies that CheckkeyHonest = 1 whenever it receives or generates a new
key. With these checks, we avoid the registration of keys for which matching signatures already
exist. Since keys for honest devices are chosen uniformly from an exponentially large group and
every signature has exactly one matching key, the chance that a signature under that key already
exists is negligible, Game 10 ≈ Game 9.

Game 11 (Correctness): In this game, F checks that honestly generated signatures are al-
ways valid. This is true, since the sigDAA, sigring and signIoT algorithms always produce signa-
tures passing through verification checks. Also, they satisfy identifyDAA(tsk, σDAA,µ, bsn)=1 and
identifyIoT(dsk, σi,m)=1. F ensures, by using its internal records MemberList and DomainKeys,
that honest users are not sharing the same secret key tsk or dsk; this is reduced with non-
negligible probability to solving the DL problem. Assume that F receives an instance h ∈ G1 of
the DL problem and must answer logg1(h). F chooses an honest device and simulates its tasks
using the unknown discrete logarithm of h as its secret key. When a tsk/dsk matches one of this
device’s signatures in the revocation list, then this must be the discrete log of h, as there is only
one tsk/dsk matching a signature.

Also, due to the binding property of the commitment scheme that binds the configuration to the
commitment produced and the correctness of the ring signature scheme used, a ring signature

ASSURED D3.7 PU Page 48 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

only verifies if the configuration belongs to the correct configuration list in the real world with is
achieved in the ideal world for honest devices since C is sampled from a pre-defined dummy list
of configuration ConfigurationList. Therefore, Game 11 ≈ Game 10.

Game 12 (Non-frameability): CHECK1 ensures that there are no multiple tsk or dsk values
matching one signature. F also checks, with the help of its internal key records Members and
DomainKeys, that no other device already has a key which would match this newly generated
signature. If this fails, we can solve the DL problem: We simulate a TC using the unknown dis-
crete logarithm of the DL instance as tsk or dsk as previously described in the DDH reduction. If
a matching tsk or dsk is found, then we have a solution to the DL problem. Therefore, as long as
solving the DL problem is computationally infeasible, Game 12 ≈ Game 11.

Game 13 (Unforgeability): CHECK3 is added to F to prevent anyone from forging signatures
by using honest tsk or dsk and their credentials. If the issuer is honest, CHECK2 prevents sign-
ing with join credentials that were not issued by the issuer. The unforgeability of our protocol is
built on the unforgeability of the CL [11], combined with the unforgeability of the aggregate sig-
natures [8]. The unforgeability of the Property-based Attestation (i.e the ring signature combined
with the commitment scheme) is based on the unforgeability of the scheme in [16]. Game 13 ≈
Game 14.

Game 14 (Revocation) CHECK4 is added to F . This ensures that honest devices are not being
revoked. If an honest device is simulated, when a matching key in the revocation list is found, it
must be the secret key of the target instance. This is again equivalent to solving the DL of the
problem, Game 14 ≈ Game 13.

Game 15 (Linkability): All the remaining checks of the ideal functionality F that are related to
link queries are now included. Considering the fact that if a tsk and dsk only match one signature
and no other signature, Game 15 is indistinguishable from Game 14, and F now includes all the
functionalities of F . This concludes the proof.

ASSURED D3.7 PU Page 49 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Chapter 6

Implementation and Performance
Evaluation of ASSURED SA

6.1 Instantiation in the context of the Use Cases

The SA scheme that has been described and analyzed throughout this deliverable has been
designed in order to be applied in large-scale “Systems-of-Systems” (SoS) and service graph
chains, comprised of devices with varying security and privacy requirements and running mixed-
criticality services. These are represented in ASSURED by the envisioned use case demonstra-
tors, who capture a wide range different industrial and application domains. Here, we position the
presented swarm attestation scheme in some example implementations of the use cases, and
we demonstrate how it can be used in order fulfill the relevant security and privacy requirements.

First of all, as elaborated in Chapter 4, in the case of the “Smart Satellites” scenario, where
multiple deployed satellites (operating in Low Earth Orbit (LEO)) need to exchange data with
a Ground Station (GS) as part of the loaded (safety-critical or monitoring) application, there is a
need for strong integrity guarantees on the correctness of each Ground Station, participating
in the constructed data path in each communication session, and needs to be executed in a
timely manner so that it does not strip any of the time available (during the communication
window) for the transmission of the mission-related data.

Furthermore, Consider, for instance, the case of the “Smart Manufacturing” scenario, where mul-
tiple Robot Program Logic Controllers (PLCs), as part of the Real-time Monitoring System (RTM),
need to be able to provide (real-time) information on the location of a robot arm to the IoT Gate-
way as the data controller for checking whether the robot is getting in close proximity to any of
the workers, moving around on the manufacturing floor, in order to see if it needs to instruct the
robot to stop its movement (ShutDown). As can be understood, this is a rather safety-critical
decision that needs to be calculated, in real-time, while of course having adequate integrity
guarantees on the correctness of the monitored location data. This translates to either hav-
ing a concrete identification of the software resources to be attested periodically (only the small
codebase which is responsible for the location monitoring), so that an appropriate performance
balance can be achieved, or to be able to identify which subset of these PLCs need to be attested
in specific time instances based on their attestation history as recorded on the ASSURED
Blockchain infrastructure. Another option would be to schedule and orchestrate the execution
of different attestation schemes for specific sets of devices depending on their exact functionality
in the context of the overall service graph chain: For instance, some PLCs might need to attest
to the correct execution of the vertical movement function, of a robot, while other might need to

ASSURED D3.7 PU Page 50 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

attest to the correct update of the data variable that controls the speed of the robot. Thus, been
able to attest at the same time different system properties for the same swarm of devices.

On the other hand, consider the example in the “Smart Aerospace” use case where all on-board
Electronic Control Units (ECUs) need to be able to provide operational information (collected
during the duration of a flight) to the Ground Station (through the Secure Server Router (SSR)
that can be acting as the Prover) accompanied with guarantees on the correctness of this data;
no ECU was compromised that may have altered the output of such operational data. Thus, in
such a flow, it is more important to have strong assurance claims on the correct config-
uration and execution of all ECUs since there are no immediate time constraints on the
performance and collection of the required information when the airplane is on the ground. Thus,
in this scenario, different ECUs will need to provide evidence based on the execution of either
Configuration Integrity Verification (CIV) or Control-Flow Attestation (CFA) tasks but in a privacy-
preserving manner so that no unauthorized entity or stakeholder, acting as Verifier, can fingerprint
the type of aircraft based on the attested software configuration profile. This necessitates for the
second feature implemented towards attestation evidence privacy.

In addition, the privacy-preserving capabilities provided by the ASSURED SA scheme is partic-
ularly important in the scenario of “Smart Cities”, where a variety of devices (such as cameras
and smoke sensors) collect data towards achieving public safety. In this case, we aim to simulta-
neously attest to the correctness of the operational state of multiple such devices simultaneously
while protecting their identity privacy, since the collected data may be personally identifiable and
may contain privacy-sensitive information. This means that we need to ensure that no such iden-
tifiable information will be leaked during the execution of the swarm attestation protocol unless
an authorized entity makes a request: In the case (for instance) of police enforcement bodies,
it should be possible to have access to the necessary link tokens for associating an (attesta-
tion) result back to the data source - especially if we are referring to deployed video cameras
where correctness of configuration software profiles need to be attached (as security claims) to
any video stream provided and for which such authenticated users should be able to have full
linkability and identification of the respective data sources.

In the following, we provide a detailed experimental evaluation and benchmarking for the
multiple phases of the newly designed swarm attestation scheme. By focusing on the re-
sources and time requirements of each operation taking place (both inside the TC and as part of
the host), we showcase the efficiency of such a scheme (despite the advanced crypto primitives
employed) to be deployed in resource-constrained ecosystems as the ones encountered in the
aforementioned use cases.

6.2 Evaluation Methodology

We analytically evaluate the computational complexity and performance of our protocol by mea-
suring the execution time of the core phases described in Chapter 4. These can be divided into
(i) offline, i.e., the operations which can be pre-computed or do not need to be executed in real-
time (such as the SETUP phase described in Section 4.3.1) and (ii) online operations. Since
we are interested in the evaluation of the protocol during runtime, the experiments presented
here focus the online operations (described in Section 4.3.2 and Section 4.3.3). We also provide
experimental results on the offline operations in Section 6.4.

Here, we present experimental results that serve to evaluate the performance of the ASSURED
Swarm Attestation scheme in terms of the execution time and overhead induced bu the core

ASSURED D3.7 PU Page 51 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

phases of the scheme, as described in Chapter 4. In the following, we divide the evaluated
operations into two classes:

With regards to the experimental setup, we aimed to utilize a testbed and parameters that enabled
us to better capture a real-world resource-constrained environment. Specifically, each IoT device
was simulated through a Raspberry Pi 3 (ARM v7) microcontroller, while we aimed to approach
Edge devices as nodes with a larger computational power and storage capacity. Specifically, the
results were generated using a laptop with a Intel(R) Core(TM) i7-8665U CPU 1.90-2.11GHz
processor. In addition, we used a TPM as the underlying root-of-trust in each edge device as a
basis for the creation of the aforementioned crypto primitives and theis secure storage. We also
employed a DAA scheme [44] enhanced with traceability and linkability features, which constitutes
a novelty of ASSURED, as it is the first project of its kind to offer a complete instantiation of
such a strong and provable privacy-preserving swarm attestation mechanism.

6.3 Evaluation of Online Operations

6.3.1 Signature Construction

The first aspect of the ASSURED Swarm Attestation scheme that we will evaluate is the con-
struction of signatures by IoT devices. Recall that, from the side of the IoT devices, performing
the ASSURED SA scheme consists of two sequencial steps: (i) hash computation for the genera-
tion of attestation evidence, and (ii) signature computation. The results for the hashing operation
are presented in Table 6.1.

Code length (bytes) SHA-256 Blake2s
32 0.052543ms 0.043423ms
256 0.047768ms 0.031259ms
4096 0.144122ms 0.122362ms

Table 6.1: Timing results of hashing in (ms)

From these results, we observe that the computation cost of the respective hash operations is
efficient even for a rather large codebase (≈ 4KB) integrity check (note thatin such IoT actuators,
the average code size is ≈ 2KB). Similarly, the time required to perform signature generation,
as it was described in Section 4.3.2.1, was measured to be ≈ 0.7ms. It is evident that the
online operations, performed by the IoT device, induce significantly lower overhead on the overall
ASSURED SA protocol compared to the tasks of the Attestation phase executed on the edge
device, including verification of IoT device signatures, construction of aggregate attestation result
signature (Section 4.3.3), and creation of an anonymous (but traceable) DAA signature on the
aggregate attestation result (Section 4.3.2.2) for the Verifier to verify the attestation report and to
trigger the resolution of a failed attestation to the potentially compromised device that caused the
failure.

6.3.2 Edge Device Aggregation and Verification

The time required for the execution of the aggregation operation (of IoT signed attestation re-
ports), from the edge device, and the subsequent aggregate attestation result verification con-
ducted by the Verifier, for the target swarm, is summarized in Table 6.2 for varying numbers of IoT
signatures. From these results, we observe that the complexity of the signature aggregation

ASSURED D3.7 PU Page 52 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

(leveraging bilinear aggregate signatures) is close to linear to the number of signatures that
should be aggregated by an Edge Device, and actually have a linear correlation coefficient of
0.9863. In Figure 6.1, we provide a visual representation of these results. This observation is sig-
nificant, since it indicates that the complexity does not increase (e.g., by growing exponentially)
with the number of signatures, thus making the aggregation operation efficient for a large number
of signatures.

No. of IoT signatures Aggregation Verification
50 0.6ms 207ms
100 0.8ms 317.2ms
300 1.7ms 753ms
500 2.5ms 1255.1ms
1000 3.3ms 2219.8ms
5000 19.8ms 9086.6ms
10000 39.8ms 17889.6ms
20000 105.3ms 57057.1ms
50000 311.8ms 166418ms
70000 442.3ms 188652.4ms
100000 480.2ms 206185.6ms

Table 6.2: Timing results for IoT signatures in (ms)

No. of DAA signatures Aggregation
10 0.02ms
100 0.04ms
500 0.1ms
10000 1.3ms
100000 7.2ms

Table 6.3: Timing results for DAA signatures in (ms)

The most computationally intense operation of our protocol is the (online) verification process.
This can be attributed to the fact that it first needs to check the validity of each Edge Device
DAA signature on the aggregate result with regards to to the basename leveraged (dictating
the anonymity level), and afterwards assert the validity of the overall aggregate result (Sec-
tion 4.3.3).

The former corresponds to the DAA VERIFY phase, experimental timing results timings (Mean
and Standard Deviation) for which are provided in Table 6.4. Note that this phase is split into
two operations: the verification of the (randomized) DAA credential which takes up ≈ 155ms
(irrespective of whether the bsn changes for every signature or not), and the verification of the
ECDSA signature, which takes up≈ 20ms. Note that, in case a basename bsn is used (columns
bsn ̸=⊥), the signature verification time is slightly increased by 5ms compared to the case where
a basename is not used (columns bsn =⊥). In any case, this is a quite efficient operation, and
since it takes place in the host device, the usage of more powerful processors can also reduce
the execution time.

For the latter, the slow verification time (as shown in Table 6.2) can mainly be attributed to the
pairing operation, which is very expensive w.r.t. elliptic curve point additions used for the ag-
gregation. While the aggregation increases with the number of signatures involved in the swarm,
the length of aggregated signatures in the ASSURED Swarm Attestation scheme remains the
same as a signature on a single message (i.e., constant size) due to the properties of the bilinear

ASSURED D3.7 PU Page 53 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Figure 6.1: Aggregation time of a various number of IoT signatures.

aggregation signatures. Overall, this verification process is performed by the centralized Verifier,
and therefore does not have significant impact on the performance of the protocol.

Time (ms) M SD M SD
Verify DAA credential 155.2 6.4 155.0 9.0
Verify signature 15.1 5.8 20.3 9.6

Table 6.4: DAA VERIFY Operation Timing

6.3.3 DAA Signature and Aggregation

In addition to the IoT signature aggregation, each Edge Device also creates a DAA signature on
the overall aggregate result for achieving anonymity and controlled linkability. Specifically,
all DAA signatures are aggregated prior to being forwarded to the root Verifier. In this context,
the DAA SIGN operation takes ≈ 700ms, as it is shown in the experimental results provided in
Table 6.5.

Activity Mean (HW-TPM) ± (95% CI)
Total Application Stack 711.35 ms 0.57/0.55 ms
TPM2 LoadExternal 76.51 0.24/0.44
TPM2 Commit 97.69 0.03/0.05
TPM2 Hash 54.65 0.04/0.009
TPM2 Sign 57.53 0.04/0.01
TPM2 FlushContext 38.7 0.02/0.01
TPM2 LoadExternal 47.59 0.04/0.009
TPM2 NV Read 54.2 0.02/0.009
TPM2 StartAuthSession 59.38 0.03/0.01
TPM2 PolicyNV 65.8 0.02/0.02
TPM2 Sign 84.03 0.01/0.01
TPM2 FlushContext 59.87 0.02/0.01

Table 6.5: DAA SIGN Operation Timing

ASSURED D3.7 PU Page 54 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

From the provided results, we observe that the actual signing operation (performed with the
TPM2 Sign command) is quite fast, and lasts 84.03ms. However, the DAA key is protected by
key restriction usage policies, so it can only be used if the device is in a correct state (to be
able to protect against corrupt edge devices). This is instantiated by the TPM2 NV Read and
TPM2 PolicyNV commands, which verify the device state recorded in the TPM’s Platform Con-
figuration Registers (PCRs) against the policy been binded to the DAA Key by verifying both that
a pseudonym has both been correctly activated, and it has not been revoked prior to being used
for signing in. This additional check requires ≈ 120ms. Also, note that the duration of 97.69ms
for the TPM Commit command refers to the case where linkability is not needed, therefore a
basename is not used. In case linkability capabilities are needed, a basename needs to be used,
which increases the execution time of this command to 224.0ms, thus introducing a trade-off in
terms of efficiency versus linkability.

Finally, we measured the aggregation time for various numbers of 64-byte DAA signatures
(ranging from 10-100000) as presented in Table 6.3. The results demonstrate that this is a
lightweight process that only slightly increases the computation cost.

Activity Mean (HW-TPM) ± (95% CI)
Total Application Stack 605.7 ms 0.37/0.83 ms
TPM2 Create 101.82 0.01/0.01
TPM2 LoadExternal 47.24 0.04/0.01
TPM2 ActivateCredential 124.6 0.02/0.08
TPM2 Commit 67.59 0.03/0.02
TPM2 Hash 54.46 0.04/0.05
TPM2 Sign 57.04 0.03/0.01
TPM2 ActivateCredential 126.47 0.04/0.06

Table 6.6: DAA JOIN Operation Timing

Activity Mean (HW-TPM) ± (95% CI)
Total Application Stack 226.23 ms 0.23/0.07 ms
TPM2 Commit 100.45 0.05/0.04
TPM2 Hash 54.54 0.05/0.01
TPM2 Sign 57.41 0.03/0.01

Table 6.7: DAA Key Creation Timing

6.3.4 Traceability

As it was previously mentioned, the ASSURED SA scheme provides traceability for DAA signa-
tures, thus providing the capability to trace a failed aggregated attestation signature back to the
Edge Device and, subsequently, to the IoT device that caused the failure. Overall, the traceability
feature consists of two main computations: (i) the generation of Traceability keys (presented
in Section 4.3.1.2), and (ii) the traceability operation of the failed attestation (presented in
Section 4.3.3.2). In our experiments, we generate the tracing keys by considering the operations
among g2 (128 bytes) and TPM’s secret key tsk (4 bytes), and the time for generating one tracing
key is ≈ 0.4ms. For the latter, we implemented the traceability feature with a 3-byte basename
bsn and 4-byte TPM’s secret key tsk, and the measurements show that the traceability operation
takes ≈ 3ms. The experimental results demonstrate the good performance of the ASSURED SA
scheme in terms of tracing a failed attestation signature back to the source device.

ASSURED D3.7 PU Page 55 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

6.4 Evaluation of Offline Operations

Next, we provide experimental results and performance evaluations for the offline DAA operations
pertaining to the SETUP phase, namely the DAA Join and DAA Key creation operations. The
DAA Join operation involves the certification and activation of the TPM attached to each edge
device, as well as the creation of the HW-based DAA key that is used in order to anonymize
the signature created when using a pseudonym key. This operation includes the interaction with
the issuer (Privacy CA) for certifying the correct creation of the ECC-based DAA key, so that
the bilinear pairings with the edge devices are performed. This operation is implemented with
the TPM commands shown in Table 6.6. Note that this operation is quite computationally heavy
(lasting approximately 605ms), but it is categorized as an offline operation and only needs to be
performed once during the enrolment of the device. However, the creation of the DAA key itself
is rather efficient, lasting approximately 226.23ms, as shown in Table 6.7.

ASSURED D3.7 PU Page 56 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

Chapter 7

Conclusions

In this deliverable, we provided a detailed description of the final version of the ASSURED Swarm
Attestation (SA) scheme, which is able to fulfill the security and privacy requirements set forth
by the envisioned ASSURED use case demonstrators. Specifically, we leveraged an Enhnaced
Traceable DAA scheme that is able to provide anonymity to the swarm devices, so that no suc-
cessful attestation can be linked back to the source device. However, in case of a failed attesta-
tion, it enables linkability properties in order to trace the result to the device that caused the
failure. The proposed scheme also enables external third parties to verify the correctness of the
attestation process, thus ensuring the certifiability and accountability of the SA scheme.

In order to construct the ASSURED SA scheme, we employed a hierarchical system model,
where the parent Edge Devices receive signed attestation results from their children IoT Devices,
and forward them to the Verifier. Afterwards, the Verifier utilises Bilinear Aggregate Signatures
in order to aggregate the received results, which serves to reduce the length of the aggregate
signature. In addition, for each device to attest to the correctness of its configuration state without
revealing software and/or hardware information about itself, thus achieving evidence privacy, we
employ Property-Based Attestation (PBA). This is based on the use of ring signatures (i.e.,
a type of anonymous digital signatures), which are able to convince the Verifier that the device
has been configured with one set of acceptable configuration specifications, without knowing the
exact device configuration.

Another important feature introduced in the final version of the ASSURED SA scheme is the
consideration of dynamic network topologies, which takes into account the mobility factor of
the swarm devices, and the need to enable the verification of the IoT device outputs by any
Edge device in the swarm. To this end, we introduced an updated design of the setup phase
of the SA protocol (for both device and swarm initialization) to be able to consider continuous
authorization and authentication of the swarm devices. Specifically, we introduced the ability
for the Edge device to authenticate an IoT device without needing to recreate all the underlying
cryptographic material, by utilizing a predefined shared secret.

In addition, we provided a detailed security analysis, where it was formally verified that the
ASSURED SA protocol fulfills the security and privacy requirements that were envisioned during
the design phase. Specifically, we employed the Universal Composability (UC) model, where
we equated the real-world network topology to an ideal-world model (indistinguishable from the
point of view of an adversary), and we added a different functionality of the scheme in each
step of the analysis. This analysis also included the aforementioned usage of ring signatures,
in order to formally verify the achievement of the attestation evidence privacy requirements. We
also provided an experimental analysis of the ASSURED SA scheme, including both offline

ASSURED D3.7 PU Page 57 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

and online operations, in order to demonstrate the effectiveness of the designed scheme, and its
ability to simultaneously attest to the correctness of a large number of devices.

Based on all the above, it follows that ASSURED offers a solution that is able to fulfill all the
security and privacy requirements of large-scale organizations comprising heterogeneous de-
vices who wish to adopt the ASSURED framework. The ASSURED SA scheme also pushes the
state-of-the-art in terms of the Swarm Attestation schemes proposed in the literature by including
privacy-preserving capabilities, which have not yet been considered in existing schemes.

ASSURED D3.7 PU Page 58 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

List of Abbreviations

Abbreviation Translation
AE Authenticated Encryption

ABE Attribute-based Encryption

AK Attestation Key

CA Certification Authority

CFA Control-flow Attestation

CIV Configuration Integrity Verification

CSR Certificate Signing Request

DAA Direct Anonymous Attestation

DLT Distributed Ledger Technology

EA Enhanced Authorization

EK Endorsement Key

GSS Ground Station Server

MSPL Medium-level Security Policy Language (MSPL)

NMS Network Management System

Privacy CA Privacy Certification Authority

Prv Prover

PCR Platform Configuration Register

PLC Program Logic Controller

RA Risk Assessment

RAT Remote Attestation

SCB Security Context Broker

SoS Systems of Systems

SSR Secure Server Router

S-ZTP Secure Zero Touch provisioning

TC Trusted Component

TLS Transport Layer Security

TPM Trusted Platform Module

Vf Virtual Function

VM Virtual Machine

Vrf Verifier

WP Work Package

ZTP Zero Touch Provisioning

ASSURED D3.7 PU Page 59 of 63

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

References

[1] Information disclosure. https : / / portswigger . net / web-security /

information-disclosure, 2022.

[2] 5G PPP Architecture Working Group. 5G empowering vertical industries, 2016. https:

//5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf [Online; ac-
cessed 26-August-2017].

[3] Tigist Abera, Ferdinand Brasser, Lachlan Gunn, Patrick Jauernig, David Koisser, and
Ahmad-Reza Sadeghi. Granddetauto: Detecting malicious nodes in large-scale autonomous
networks. In 24th International Symposium on Research in Attacks, Intrusions and De-
fenses, pages 220–234, 2021.

[4] Mahmoud Ammar, Bruno Crispo, and Gene Tsudik. Simple: A remote attestation approach
for resource-constrained iot devices. In 2020 ACM/IEEE 11th International Conference on
Cyber-Physical Systems (ICCPS), pages 247–258. IEEE, 2020.

[5] Nadarajah Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi, Matthias
Schunter, Gene Tsudik, and Christian Wachsmann. Seda: Scalable embedded device at-
testation. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 964–975, 2015.

[6] ASSURED. Assured secure distributed ledger maintenance & data management. Deliver-
able D4.2, 11 2022.

[7] Dan Boneh. The decision diffie-hellman problem. In Algorithmic Number Theory: Third
International Symposiun, ANTS-III Portland, Oregon, USA, June 21–25, 1998 Proceedings,
pages 48–63. Springer, 2006.

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In Advances in Cryptology—EUROCRYPT 2003:
International Conference on the Theory and Applications of Cryptographic Techniques, War-
saw, Poland, May 4–8, 2003 Proceedings 22, pages 416–432. Springer, 2003.

[9] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachsmann, and
Patrick Koeberl. TyTAN: tiny trust anchor for tiny devices. In Proceedings of the 52nd Design
Automation Conference DAC ’15, pages 1–6, 2015.

[10] J. Camenisch, L. Chen, M. Drijvers, A. Lehmann, D. Novick, and R. Urian. One tpm to
bind them all: Fixing tpm 2.0 for provably secure anonymous attestation. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 901–920, 2017.

ASSURED D3.7 PU Page 60 of 63

https://portswigger.net/web-security/information-disclosure
https://portswigger.net/web-security/information-disclosure
https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf
https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

[11] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally composable direct anony-
mous attestation. In Public-Key Cryptography – PKC 2016, volume 9615 of LNCS, pages
234–264. Springer, 2016.

[12] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Paper 2000/067, 2000. https://eprint.iacr.org/2000/067.

[13] Xavier Carpent, Karim Eldefrawy, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi, and
Gene Tsudik. Reconciling remote attestation and safety-critical operation on simple iot de-
vices. In Proceedings of the 55th Annual Design Automation Conference, DAC ’18, New
York, NY, USA, 2018. Association for Computing Machinery.

[14] Xavier Carpent, Karim ElDefrawy, Norrathep Rattanavipanon, and Gene Tsudik. Lightweight
swarm attestation: A tale of two lisa-s. ASIA CCS ’17, 2017.

[15] Liqun Chen, Nada El Kassem, and Christopher J. P Newton. How to Bind a TPM’s Attesta-
tion Keys with its Endorsement Key. To appear in the Computer Journal, 2023.

[16] Liqun Chen, Hans Löhr, Mark Manulis, and Ahmad-Reza Sadeghi. Property-based attesta-
tion without a trusted third party. In International Conference on Information Security, pages
31–46. Springer, 2008.

[17] The ASSURED Consortium. Assured attestation model & specification. Deliverable D3.1,
11 2021.

[18] The ASSURED Consortium. Assured layered attestation and runtime verification enablers
design & implementation. Deliverable D3.2, 11 2021.

[19] The ASSURED Consortium. Operational sos process models & specification properties.
Deliverable D1.3, 9 2021.

[20] The ASSURED Consortium. Risk assessment methodology & threat modelling. Deliverable
D2.1, 11 2021.

[21] The ASSURED Consortium. Assured real-time monitoring and tracing functionalities. Deliv-
erable D3.4, 2 2022.

[22] The ASSURED Consortium. Assured secure and scalable aggregate network attestation.
Deliverable D3.6, 2 2022.

[23] The ASSURED Consortium. Final demonstrators implementation report. Deliverable D6.3,
8 2022.

[24] The ASSURED Consortium. Assured layered attestation and runtime verification enablers
design & implementation - version 2. Deliverable D3.3, 2 2023.

[25] The ASSURED Consortium. Assured real-time monitoring and tracing functionalities - ver-
sion 2. Deliverable D3.5, 2 2023.

[26] The ASSURED Consortium. Assured tc-based functionalities - version 2. Deliverable D4.6,
The ASSURED Consortium, 02 2023.

ASSURED D3.7 PU Page 61 of 63

https://eprint.iacr.org/2000/067

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

[27] Heini Bergsson Debes, Edlira Dushku, Thanassis Giannetsos, and Ali Marandi. Zekra: Zero-
knowledge control-flow attestation. ASIA CCS ’23, page 357–371, New York, NY, USA,
2023. Association for Computing Machinery.

[28] Heini Bergsson Debes and Thanassis Giannetsos. Zekro: Zero-knowledge proof of integrity
conformance. In Proceedings of the 17th International Conference on Availability, Reliability
and Security, ARES ’22, New York, NY, USA, 2022. Association for Computing Machinery.

[29] Heini Bergsson Debes and Thanassis Giannetsos. Retract: Expressive designated verifier
anonymous credentials. In Proceedings of the 18th International Conference on Availability,
Reliability and Security, ARES ’23, New York, NY, USA, 2023. Association for Computing
Machinery.

[30] Heini Bergsson Debes, Thanassis Giannetsos, and Ioannis Krontiris. BLINDTRUST: oblivi-
ous remote attestation for secure service function chains. CoRR, abs/2107.05054, 2021.

[31] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Transactions
on information theory, 29(2):198–208, 1983.

[32] Edlira Dushku, Md Masoom Rabbani, Mauro Conti, Luigi V Mancini, and Silvio Ranise. Sara:
Secure asynchronous remote attestation for iot systems. IEEE Transactions on Information
Forensics and Security, 15:3123–3136, 2020.

[33] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. SMART: Secure and
Minimal Architecture for (Establishing Dynamic) Root of Trust. In Proceedings of the 19th
Annual Network & Distributed System Security Symposium NDSS ’12, page 1–15, 2012.

[34] Thanassis Giannetsos and Ioannis Krontiris. Securing v2x communications for the future:
Can pki systems offer the answer? In Proceedings of the 14th International Conference on
Availability, Reliability and Security, ARES ’19, 2019.

[35] Stylianos Gisdakis, Marcello Lagana, Thanassis Giannetsos, and Panos Papadimitratos.
SEROSA: service oriented security architecture for vehicular communications. In VNC.
IEEE, 2013.

[36] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-
systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Com-
puting, STOC ’85, page 291–304, New York, NY, USA, 1985. Association for Computing
Machinery.

[37] Ragnar Mikael Halldórsson, Edlira Dushku, and Nicola Dragoni. Arcadis: Asynchronous
remote control-flow attestation of distributed iot services. IEEE Access, 9:144880–144894,
2021.

[38] IETF RATS Working Group. Trusted path Routing, 2023. https : / / www .

ietf . org / archive / id / draft-voit-rats-trustworthy-path-routing-07 . html #

name-yang-module [Online; accessed 04-February-2023].

[39] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov. Mi-
croservices: The journey so far and challenges ahead. IEEE Software, 35(3):24–35, 2018.

ASSURED D3.7 PU Page 62 of 63

https://www.ietf.org/archive/id/draft-voit-rats-trustworthy-path-routing-07.html#name-yang-module
https://www.ietf.org/archive/id/draft-voit-rats-trustworthy-path-routing-07.html#name-yang-module
https://www.ietf.org/archive/id/draft-voit-rats-trustworthy-path-routing-07.html#name-yang-module

D3.7 - ASSURED Secure and Scalable Aggregate Network Attestation - version 2

[40] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan. TrustLite:
A security architecture for tiny embedded devices. In Proceedings of the 9th European
Conference on Computer Systems EuroSys ’14, pages 1–14, 2014.

[41] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. Salad: Secure and
lightweight attestation of highly dynamic and disruptive networks. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, pages 329–342, 2018.

[42] Ioannis Krontiris, Thanassis Giannetsos, Peter Schoo, and Frank Kargl. Buckle-up: au-
tonomous vehicles could face privacy bumps in the road ahead. In 18th escar Europe : The
World’s Leading Automotive Cyber Security Conference (Konferenzveröffentlichung). 2020.

[43] Benjamin Larsen, Heini Bergsson Debes, and Thanassis Giannetsos. Cloudvaults: Inte-
grating trust extensions into system integrity verification for cloud-based environments. In
Computer Security, pages 197–220, Cham, 2020. Springer International Publishing.

[44] Benjamin Larsen, Thanassis Giannetsos, Ioannis Krontiris, and Kenneth Goldman. Direct
anonymous attestation on the road: Efficient and privacy-preserving revocation in c-its. In
Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec ’21, New York, NY, USA, 2021.

[45] Kevin S McCurley. The discrete logarithm problem. In Proc. of Symp. in Applied Math,
volume 42, pages 49–74. USA, 1990.

[46] Wenjuan Meng, Tao Jiang, and Jianhua Ge. Dynamic Swarm Attestation With Malicious
Devices Identification. IEEE Access, 6:50003–50013, 2018.

[47] OpenFog Consortium Architecture Working Group. OpenFog Reference Architecture for Fog
Computing. https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_
2_09_17.pdf, 2017. [Online; accessed Aug 31, 2022].

[48] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone: A Comprehensive Survey.
ACM Comput. Surv., 51(6), 2019.

[49] Pasika Ranaweera, Anca Delia Jurcut, and Madhusanka Liyanage. Survey on multi-access
edge computing security and privacy. IEEE Comm. Surveys, 2021.

[50] Phillip Rieger, Marco Chilese, Reham Mohamed, Markus Miettinen, Hossein Fereidooni,
and Ahmad-Reza Sadeghi. Argus: Context-based detection of stealthy iot infiltration attacks.
USENIX, 2023.

[51] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In International
conference on the theory and application of cryptology and information security, pages 552–
565. Springer, 2001.

[52] Stephan Wesemeyer and all. Formal analysis and implementation of a tpm 2.0-based direct
anonymous attestation scheme. ASIA CCS ’20, 2020.

ASSURED D3.7 PU Page 63 of 63

https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf

	ASSURED_Cover_Page_D37
	ASSURED_D3_7
	List of Figures
	List of Tables
	Introduction
	Scope and Purpose
	Relation to other WPs and Deliverables
	Deliverable Structure

	Additional Features Complementing the ASSURED Swarm Attestation Scheme
	High-level Overview of the Building Blocks and Workflow
	Features and Updates on the ASSURED Swarm Attestation Scheme

	System/Threat Model & Listing of Security and Privacy Requirements
	Adversarial Model
	The Key Binding Problem
	Security & Privacy Requirements and Trust Assumptions
	Security & Privacy Requirements
	Trust Modeling

	Scalable Swarm Attestation Protocol with Enhanced Privacy Capabilities
	Preliminaries - Dynamic SA Scheme Building Blocks
	Aggregated Signatures
	Direct Anonymous Attestation
	Ring Signatures
	Ring Signature Scheme

	Property-Based Attestation (PBA)

	Towards Dynamic Topologies with Device Mobility
	High-level Dynamic Swarm Attestation with Evidence Privacy

	Architectural Details and Protocols of ASSURED Dynamic Swarm Attestation
	Setup Phase
	Edge Device Enrollment
	Generating the Tracing Keys by the Opener
	IoT Device Enrollment

	Attestation Phase
	IoT Device Signature
	Edge Device Signature & Traceability

	Verification Phase
	Link
	Tracing/Opening
	Revocation

	Security Analysis of the ASSURED Swarm Attestation Protocol
	Swarm Attestation Protocol Security Analysis
	Methodology
	Ideal Functionality Algorithms for the Dynamic Swarm Attestation with Evidence Privacy
	Universal Composability Security Model

	Swarm Attestation Protocol Security Proof

	Implementation and Performance Evaluation of ASSURED SA
	Instantiation in the context of the Use Cases
	Evaluation Methodology
	Evaluation of Online Operations
	Signature Construction
	Edge Device Aggregation and Verification
	DAA Signature and Aggregation
	Traceability

	Evaluation of Offline Operations

	Conclusions

