- » " o .
A . | | : :

Runtime Iracing
Meni Orenbach ASSURED Webinar
NVIDIA Online [20" June 2023

www.project-assured.eu

https://www.project-assured.eu/

Trusted Computing Base of Edge

Devices ASSURE(»

Edge devices runs user services (Trusted R
- Unfortunately, services may contain vulnerabilities that _ Computing Base |
can be exploited p .
- E.g., buffer overflows Untrusted
« Ourvision in ASSURED - 7
* Detection rather than prevention : Hardware)
How to maintain secure detection after an exploit? \ J
* Run security critical services in a Trusted
Execution Environment (TEE) // \ TPM Attestation\

« Tracer prototype uses ARM TrustZone Secure Operating Software Agent’

« Maintain a minimal TCB system Stack J
 Hardware =
© Firmware . RuntimelZed Normal Operating system
« Tracer & TEE Operating System \

« Note, for wide adoption and ease-of-use we also
support isolation via traditional OS MMU configuration

N\

[CPU][Memory | [Peripherals] [TPM]/

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/

TrustZone & OP-TEE Overview ASSURE(»

- OP-TEE
« Open-source TEE for ARM TrustZone
* Support for many platforms
- Client opens session towards trusted application (TA)
« TA identifies client and return session handle
« Client invokes TA commands
Client Client
* TA checks command ID and parses [Appﬁcaﬁo,J [App"caﬁorJ
the parameters '
OP-TEE
* TA executes the command OP-TEE Client AP! Library Jill Client AP
« TA returns the output, status Tt Libaty

« Client closes the TA session Kernel land

Client

Application Trusted Application

OP-TEE Internal
Core API Library

Appli.

Priv.
OP-TEE
Core Firmware

OP-TEE Linux driver

Normal world Secure world

source: Build secure key management services in OP-TEE
[1] https://optee.readthedocs.io/en/latest/general/platforms.html

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/
https://optee.readthedocs.io/en/latest/general/platforms.html

Tracer Operation in OP-TEE ASSURE(»

- The tracer is partitioned to run in and out of the
TEE: secure part and insecure part

Untrusted tracer
* Runs as regular process
« Communicates with untrusted services
« Attestation agent Shared
» User services memory

Normal world | Secure world

- Trusted tracer
* Runs as a pseudo-TA: part of TEE OS

« Performs isolated security critical
operations

- Tracer maintains TEE security best-practices

+ Isolated memory, copy-to/from to avoid
TOCTTOU attacks

* Isolated OS services
» Tracer secure-sensitive output is signed

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/

Control Flow Hijacking Attacks ASSURE(®

- Overflow attacks

- Qverride function pointer/ ey e
return address args

- Execution context hijacked [44)
to attacker-controlled flow sfp printf()

- Basis for different attacks
- Returninto libc local buf “/bin/sh”
« ROP, JOP, COOP

WWW.PROJECT-ASSURED.EU Meni Orenbach, Nvidia

https://www.project-assured.eu/

Data Oriented Programming Attacks ASSURE[»

- Data-only attacks can also
affect execution context int number = 5;

« Change branches to

1T (number > 0) {
taken/not-taken

—p [/ code

- Change number of loop b
iterations S
// code
+
» Control Flow Tracmg Can » // code after if...else

detect such attacks!

WWW.PROJECT-ASSURED.EU Meni Orenbach, Nvidia

https://www.project-assured.eu/

Control Flow Tracing ASSURE[»

a=3,b=2
Tracing granularity \
- Basic blocks gcd(a,b):

Output: Ordered list of basic blocks
- — b == b!=0
{ "Oxfffff3f9825¢c":"no debug symbol" }

Programs execute in normal world

TOXTTTTT3T9827c" =" =b
"OXFFfff3f983b4": " (R b=a%b

"OxFffff3f98448": "

r Y R s =y NV a=
s LT st of control flows
"Oxfffff3f9822c":"no debug symbol" } « gcd_entry [a=3, b=2]
RS R e] + god_b!=0 [a=3, b=2]
Oxfffff3f9825¢":"no debug symbol” } . gcd_entry [a=2, b=1

* gcd_b!=0 [a=2,b=1]

e gcd_entry [a=1, b=0]

« gcd b==0 [a=1, b=0]

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/

Control Flow Tracing Approaches ASSURE[»

- Software: static vs dynamic rewriting
« Static Iis usually most efficient than dynamic but

* Limits interoperability
« Requires manual modifications
- Hardware: hardware-assisted vs dedicated hardware
« More efficient than software-only approaches
« Limits usability and adoption

« Dedicated hardware further limits usability and adoption

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/

ASSURED Software Control Flow Tracing ASSURE[»

« Based on DynamoRIO framework world

- Prologue in each basic block (BBL) l Normal

 Log BBL address into a thread-local

storage buffer
« Once the buffer is filled

e Send the context to the Trusted Tracer

Secure
world

- Attestation agent query latest traces

* Trusted Tracer sends signhed traces

https://dynamorio.org/

WWW.PROJECT-ASSURED.EU Meni Orenbach, Nvidia

https://www.project-assured.eu/
https://dynamorio.org/

Trace Signhature ASSURE(®

- Private key embedded in the tracer, available only to the
secure world

- Tracer generates traces and signs a hash of them
together with a per-request nonce

- Tracer can also delegate trust to the TPM
« Verify traces signhatures and sign the traces with TPM key

« Enables adding support to using the TPM's attestation key
additionally to the tracer private key towards remote
attesting the traces authenticity.

WWW.PROJECT-ASSURED.EU Meni Orenbach, Nvidia

https://www.project-assured.eu/

ASSURED Hardware-assisted Control Flow Tracing ASSURE[»

Uses ARM Coresight ETM

Programming model
- Mode (FIFO) — =
 Status (Err, Empty, FtEmpty, TMCReady, Full) .,
« Control (TraceCaptEn) Y e *.___jjf;_l_i -
- RAM Write Pointer & RAM Size o = |
- RAM Read Pointer - e——m_———_———
« RAM Read Data Nosier —p- Sive ey

source: ARM Coresight Architecture

Writes to registers control tracing state machine

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/

Trace Memory Controller state machine ASSURE(»

Controlled by
« CTL register TN

Disabled

o Trace capture enable bit TraceCaptEn = 0
p TraceCaptEn = 1 TMeREady =1 TraceCaptEn =0

. STS register = B
o TMCReady bit

TraceCaptEn ;0 unformatter empty Circular buffer empty

Running Disabling Draining Stopped
TraceCaptEn =1 TraceCaptEn =0 TraceCaptEn = 1 TraceCaptEn =1
TMCReady =0 TMCReady =0 TMCReady =0 TMCReady = 1

w_ DrainBuffer = 1
TraceCaptEn =0 (circular buffer
R mode only)

TraceCaptEn =0

Formatter, unformatter and

Stop Event
HW FIFO empty

\

source: ARM Coresight Architecture

WWW.PROJECT-ASSURED.EU

Stopping
TraceCaptEn = 1
TMCReady =0

https://www.project-assured.eu/

Control flow tracing

- Stored to physically contiguous buffer in

ASSURE(»

kernel space

- Filters

Program Under

Trace buffer

Untrusted Tracer

Trusted Tracer

Attestation agent

Trace
- Address ranges : ,
€ Enable tracing
° p | D E—Update buffer—

€«—Poll buffer size—

§<—Disable tracing, ;'aause application—f

:‘<—Drain buﬁer—§

E(—Enable fracing, resume application—f

L
Pass to secure 1

world '

request fraces

E Decode & reconstruct !
— execution path, -
generate traces & sign

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/

Coresight decode analysis flow ASSURE(»

Trace Data Packet
. IR e 1 || | 0 Reorennst RSN
- Coresight traces are | oot 1526 dosg 227 Addresst assicessdsos
| 9ebe feff ©866 f8f§ [t Aton: EEEN -
e n COd ed E da9d 4Bbc ©cad beff "S,t;j‘;’:;d ‘ '
| feop Dofb fied fafs

- Do o o o o e e

- Decoding done with Jpei— dms T 5
ptm2human’ '

sub sp, sp, #0x1@ *
720: nov w0, ¥Dxd
724: str w0, [sp, #12]
T28: ldr w0, [sp, w1i2)
72C: subs »0, xb, W
739: b.ne 72c <Loop+dx18> 1 l l

+ Recover complete = ;
execution path with | B i b

0002CGGAARA0000 wnain=:

program disassembly’&

500 stp x29, x30, [sp, #-16]!
° (OL I o X g. S
code analysis s BL Tic <loops |
Soc: mov w0, N¥Oxb

lép 29, x30, [spl, #16

[1] https://github.com/hwangcc23/ptm2human Assembly Code

[2] https://qithub.com/capstone-engine/capstone source: ARMored CoreSight: Towards Efficient Binary-only Fuzzing

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/
https://github.com/hwangcc23/ptm2human
https://github.com/capstone-engine/capstone

Comparing Tracing Approaches ASSURE[»

- Measured with Embench-loT benchmark suite

10000000
o&

0 <
'\ .0 N

1000000
100000

10000

1000

10

1
‘{\‘O

QQ N4 6@ <

Milliseconds

o

,'2> Q’ S R
g

o é \

& ‘é\'@ (\ ,(/ ‘—}%

& R '\‘\°

>
< 9%

ub.com/embench/embench-iot iz MBbraSighi: m SR

https://www.project-assured.eu/
https://github.com/embench/embench-iot

Runtime configuration tracing ASSURE[»

- Linux Integrity Measurement Architecture (IMA)
« Chain of trust — measure files before accessed/executed
¢ Store measurements in kernel list
« Extend measurements into TPM
« Attest all measurements to third party

- Key Idea: extend this approach into runtime integrity
tracing

« Measure in-memory processes/libraries
« Mitigate memory-only attacks

WWW.PROJECT-ASSURED.EU Meni Orenbach, Nvidia

https://www.project-assured.eu/

Runtime configuration tracing ASSURE(»

. Programs execute in normal world

- Upon attestation agent request Trusted Tracer

. Request: process identifier, invalid bytes
T : tati ‘ Address
race in-memory representation o extractor
programs/libraries
. Based on memory forensics techniques Hésh
analyzing OS-related data structures _
generation
Challenges
. ?
How to access memory~ Memory
* How to handle unmapped pages? aCCess
. How to get reference attestation value?

Program ‘ Cibraries \
code pages

Main memory

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/

Runtime configuration tracing ASSURE[»

How to access the main memory?

« With OP-TEE, the tracer runs as part of the OS and manipulates the MMU to map normal
world pages for read access

« Without OP-TEE, the tracer utilize a kernel module
Kernel symbols’ virtual addresses embedded in the secure world, thereby enabling
« Page table discovery and physical-virtual translations

* Accessing specific memory regions to infer semantic information to detect code pages for
libraries/processes

How to handle unmapped pages?
« The tracer pins traced process pages in memory
How to get reference attestation value?

« The tracer computes all offsets that may be legitimately changed by the dynamic loader and
ignore them when computing the overall hash

« The tracer computes a reference golden hash based on ELF parsing

[1] https://qgithub.com/NateBrune/fmem

WWW.PROJECT-ASSURED.EU Meni Orenbach, Nvidia

https://www.project-assured.eu/
https://github.com/NateBrune/fmem

Putting it all together ASSURE(R

Edge device

Program under
trace

Tracer untrusted agent Tracer trusted agent

Attestation Request | | Untrusted Trusted || CFA .
Server interface interface Sign
agent ClVv

ARM Trusted Firmware

WWW.PROJECT-ASSURED.EU

https://www.project-assured.eu/

ASSURE(p

Demo Time

WWW.PROJECT-ASSURED.EU © Copyright ASSURED 2020-2023

https://www.project-assured.eu/

wWww

B g
o L o8 o »

el o AU R o D '
N Y v ey ' :

'ASSUREl

Thank you

PROJECT-ASSURED.EU g? @Project_Assured
:*) *** ASSURED project is funded by the EU’s Horizon2020
LI programme under Grant Agreement number 952697

© Copyright ASSURED 2020-2623

https://www.project-assured.eu/
https://www.project-assured.eu/
https://twitter.com/Project_Assured
https://twitter.com/Project_Assured

