
Direct Anonymous Attestation on the Road: Efficient and
Privacy-Preserving Revocation in C-ITS

Benjamin Larsen∗, Thanassis Giannetsos†, Ioannis Krontiris∓, Kenneth Goldman‡
∗Technical University of Denmark (DTU), Cyber Security Section, Denmark

†Ubitech Ltd., Digital Security & Trusted Computing Group, Greece
∓ Huawei Technologies Duesseldorf GmbH, Munich, Germany

‡ IBM T. J. Watson Research Center, Hawthorne, New York
{benlar@dtu.dk, agiannetsos@ubitech.eu, ioannis.krontiris@huawei.com, kgoldman@us.ibm.com}

ABSTRACT

Vehicular networks rely on Public Key Infrastructure (PKIs) to gen-
erate long-term and short-term pseudonyms that protect vehicle’s
privacy. Instead of relying on a complex and centralized ecosys-
tem of PKI entities, a more scalable solution is to rely on Direct
Anonymous Attestation (DAA) and the use of Trusted Computing
elements. In particular, revocation based on DAA is very attrac-
tive in terms of efficiency and privacy: it does not require the use
of Certificate Revocation Lists (CRLs) and revocation authorities
can exclude misbehaving participants from a V2X system with-
out resolving (i.e. learning) their long-term identity. In this paper,
we present a novel revocation protocol based on the use of DAA
and showcase a detailed design and modeling of the implementa-
tion on a real TPM platform in order to demonstrate its significant
performance improvements compared to existing solutions.

KEYWORDS

Security, Privacy, Direct Anonymous Attestation, Trusted Platform
Module (TPM), Revocation, C-ITS, V2X
ACM Reference Format:

Benjamin Larsen et. al.. 2021. Direct Anonymous Attestation on the Road:
Efficient and Privacy-Preserving Revocation in C-ITS. In Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec ’21), June 28–
July 2, 2021, Abu Dhabi, United Arab Emirates. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3448300.3467832

1 INTRODUCTION

Connected vehicles, as part of the emerging Cooperative Intelligent
Transportation Systems (C-ITS) are positioned to transform the
future of mobility. This change is enabled by the exchange of mes-
sages between vehicles (V2V) and between vehicles and transport
infrastructure (V2I), comprising together the overall vehicular com-
munication (V2X). V2X communication systems are expected to
greatly improve road safety and traffic efficiency while better sup-
porting autonomous driving. V2X can also save lives by providing
road hazard warnings to the driver and reducing collisions [3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8349-3/21/06. . . $15.00
https://doi.org/10.1145/3448300.3467832

However, despite their benefits, privacy is a key concern in this
facet of C-ITS, since the involved vehicle transmissions can be
used to infringe the users’ location privacy [28]. Many V2X ap-
plications rely on broadcasting continuous and detailed location
information, as for example, through the Cooperative Awareness
Messages (CAM), which are broadcasted unencrypted by vehicles
at the frequency of 10 Hz. If this information is misused (all ex-
changed messages can be eavesdropped within radio range) can
lead to the extraction of detailed location profiles of vehicles and
path tracking [10]. Since there is usually a strong correlation be-
tween a vehicle and its owner [12], location traces of vehicles have
the potential to reveal the movement and activities of their drivers.

Addressing this challenge, current approaches are based on
PKI-based solutions [11] with privacy-friendly authentication ser-
vices through the use of short-term anonymous credentials, i.e.,
pseudonyms [20]. The common denominator in such architectures
is the existence of trusted (centralized) infrastructure entities for
the support of services such as authenticated vehicle registration,
pseudonym provision, revocation, etc. The location privacy is pro-
tected by requiring that each vehicle uses multiple pseudonyms,
frequently changing from one pseudonym to another [11].

The use of changing pseudonyms can be considered the state-
of-the-art in VANET privacy-enhancing technologies like the one
that was recently proposed in [27]. Prominent solutions include the
Security Credential Management System (SCMS) [27], which is a
product of vehicle OEM consortia and the US Department of Trans-
port (USDOT), and the Cooperative-ITS Certificate Management
System (CCMS) developed by the European Committee for Stan-
dardisation (CEN) and European Telecommunications Standards
Institute (ETSI), with support from the European Commission [6].

These architectures have several inherent drawbacks stemming
from the fact that they are based on a complex and centralized
ecosystem of PKI entities, which we need to trust for issuing and
distributing pseudonym certificates. First, a technical and organiza-
tional separation of capabilities between the PKI entities is required
to cope with internal attackers, resulting in a very costly solution
to implement in practice. The bottleneck of having to connect to
the back-end infrastructure to acquire pseudonym certificates is
resolved by downloading a larger pseudonym pool size, which then
provides less protection against Sybil attacks. In the context of revo-
cation policies for removing misbehaving nodes from the network,
they are based on the dissemination of CRLs, which is an inefficient
solution in terms of computational and communication overhead.

To address the aforementioned challenges of centralised PKI
solutions, several researchers have suggested moving towards a

https://doi.org/10.1145/3448300.3467832
https://doi.org/10.1145/3448300.3467832

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Benjamin Larsen et. al.

decentralised approach, where trust is shifted from the back-end in-
frastructure to the edge [9, 24]. In its recent white paper on privacy-
by-design aspects of C-V2X, 5GAA is also pointing to the need of
more scalable and decentralised solutions in the future, eliminating
the need for trust built around "federated infrastructures” [1].

As it has been shown by recent work, one way to do this is by
leveraging the use of Direct Anonymous Attestation (DAA) and
the incorporation of trusted computing technologies [9, 14, 24].
DAA, originally introduced by Brickell, Camenisch, and Chen [2],
is a cryptographic protocol designed primarily to enhance user
privacy within the remote attestation process of computing plat-
forms, which has been adopted by the Trusted Computing Group
(TCG) [23], in its latest specification.

Applying the DAA protocols for securing V2X communication
results in the redundancy (and removal) of most of the PKI infras-
tructure entities, including the pseudonym certificate authority:
vehicles can now create their own pseudonym certificates using an
in-vehicle trusted computing component (TC), and DAA signatures
are used to self-certify each such credential that is verifiable by
all recipients. Furthermore, a DAA-based model supports a more
efficient revocation of misbehaving vehicles that don’t require the
use of CRLs, removing, therefore all the computational and commu-
nication overhead that comes with it. Instead, when the Revocation
Authority issues a revocation request, this triggers the TC of the
misbehaving vehicle to delete all of its pseudonymous certificates
and cryptographic key pairs, thus, rendering the TC unable to gen-
erate new pseudonyms in the future. However, the details of this
process have not been shown and demonstrated so far, and its
feasibility remains an open question.

In this paper, we provide a novel revocation protocol for C-ITS
based on DAA that leverages the benefits of trusted computing
to offer an efficient and privacy-respecting solution. Our protocol
provides both revocations of the vehicle from the system and revo-
cation of specific pseudonyms that cannot be reused again (referred
to as hard and soft revocation, respectively). We provide an imple-
mentation of the protocol in a real TPM in order to demonstrate
that the proposed solution is applicable to the real world and can
meet the strict performance requirements, as documented in ETSI
standards, and also verify that near-constant revocation time is
achievable even when multiple pseudonyms are entailed.

2 MOTIVATION AND CONTRIBUTION

Revocation is a standard consideration for any C-ITS system. In
case of a misbehaving vehicle, the wrongdoer can be evicted and be
prevented from further participation. In the case of PKI-based solu-
tions, the revocation can be done in standardized ways by adding
the revoked certificates to a CRL, which is then published by the
CA responsible for that trust domain. However, for vehicles using
short-lived pseudonym certificates, things are more complicated. If
a vehicle possesses multiple certificates that are unlinkable, every
single certificate needs to be put on the CRL, which would increase
the bandwidth requirement to unfeasible levels. Nowatkowski et
al. [19] have shown that the CRL list may grow as much as 2.2 GB,
depending on the policy for the number of pseudonyms on vehicles.

There are several approaches in the bibliography that try to
address the problem with the size of CRLs. First, CCMS takes the
approach not to revoke pseudonym certificates but instead revoke

only the long-term identity of the vehicle [6] to prevent it from
acquiring new ones. SCMS includes a linkage value to pseudonym
certificates derived from cryptographic seed material [27]. Publica-
tion of the seed is sufficient to revoke all certificates belonging to
the revoked vehicle. However, this requires the addition of two new
entities in the architecture, called Linkage Authorities (LAs), with
corresponding technical and organizational guarantees to operate
separately. Alternative solutions leverage encrypted pseudonyms
during the provisioning process [18, 21] so that a vehicle can only
decrypt pseudonyms after receiving the encryption keys. In addi-
tion to the efficiency problems of the above revocation mechanisms,
they all require the resolution of the vehicle’s long-term identity
from their pseudonyms, thus, posing a significant privacy threat.

2.1 Related Work

In order to address these shortcomings of PKI-based solutions, there
is an increasing effort by researchers to apply anonymous creden-
tials as a solution for privacy-respecting V2X communication. For
example, Foster et al. presented PUCA [8] a pseudonym scheme that
allows vehicles to use anonymous credentials for authentication
with the PCA when obtaining new pseudonyms in the existing Eu-
ropean ITS system, changing only the pseudonym issuance phase.
PUCA foresees no way of credential revocation. The REWIRE V2X
revocation protocol [7] uses trusted computing to enable revocation
without pseudonym resolution. An enhanced variant was presented
in O-TOKEN [25] where an additional key pair is embedded into
pseudonym certificates. However, in both schemes, there are inher-
ent trust assumptions been made on the correctness of each vehicle
Electronic Unit (ECU) that limits their feasibility and applicabil-
ity in real-world environments. More specifically, they have not
considered an enhanced threat model where malicious and/or com-
promised ECUs can monitor and modify all interactions between
the host and the attached Trusted Component (TC); i.e., using the
TC as an "oracle" that can interact with for executing sensitive
crypto operations in order to bypass the revocation.

Whitefield et al. [24] first applied DAA to the V2X case and
showed how to enable vehicles to manage their own pseudonym
certificates, however revocation was left open. Hicks et al. [14]
proposed a scheme that leverages the decentralized properties of
DAA towards enabling a secure and privacy-preserving revocation
coupled with strong vehicle authentication. However, even though
they use DAA, they don’t provide a fully decentralised architecture.
Their solution still depends heavily on newly introduced central-
ized entities (on top of the existing RA), such as an Enrollment
Authority and an Authorization Authority. This effectively makes
their scheme susceptible to malicious insiders who can get enough
information and break the anonymity behind the pseudonyms and
also link multiple pseudonyms together back to the same entity.
Finally, Kumar et al. [17] proposed the use of DAA for verifier-local
revocation, but their scheme is rather inefficient, because they still
use revocation lists and the computational and communication
overhead is linear to the size of the list.

2.2 Overview of Revocation using DAA

Figure 1 introduces the typical DAA [2] pseudonym life-cycle ar-
chitecture [24]. As we can see, only two trusted third parties are
needed; (i) the Issuer who is responsible for authenticating vehicles

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

Register
Pseudonyms

Contains and Cotrols

Produces
Pseudonyms
DAA Create

Trutsted
Component

Revokes
Pseudonym(s)

Provides
PoR

Provides DAA
Credentials

DAA Setup / Join

Forwards
Revocation Message

Vehicle

Reports
Pseudonym

Vehicle

1

6

7

Signed Message + PoR
DAA Sign

2

3

4

0
5

Revocation AuhtorityIssuer

Figure 1: Conceptual Overview

through the JOIN protocol (Step 0) and (ii) the Revocation Authority
(RA) that shuns out misbehaving vehicles from the ITS within the
revocation domain that is managing. In our context, vehicles are
the combination of a host, that is a vehicular onboard computer, and
a trusted computing component (TC) that executes in the "secure
world"; together, they form the platform which we refer to from
this point onwards as the vehicle.

Using DAA, the trusted computing component (TC) in the vehi-
cle is responsible for creating the pseudonym certificates without
involving any infrastructure component from the back-end (Step 1
- DAA CREATE). Only the Issuer knows the identity of a vehicle.
During the DAA SETUP and JOIN phases, the Issuer verifies that
the TPM is valid and provides credentials that can be later used for
creating either linked or unlinked pseudonyms; this is decided by
the vehicle itself (DAA CREATE phase). Unlinkable pseudonyms
enable the provision of unconditional anonymity, a property that is
not provided by other proposed Vehicular DAA protocols [14]. The
credentials do not contain any personal identifying information.
The signing key of the TPM is not linked to the vehicle, and it is
certified blindly by the Issuer. Revealing to whom the pseudonym
corresponds to is infeasible because the identity of the TC (and
hence that of the vehicle) is not linked to its signing key.

The vehicle cannot use pseudonyms unless it has been registered
with the RA (Step 2 - DAA JOIN). The registration consists of pro-
viding the RA with unique values that can be used later to revoke
the key (DAA SETUP). We call these values revocation hashes. Upon
such a registration, the vehicle will receive Proof of Registration
(PoR) (Step 3), which is sent along with a signed message (Step
4). Without PoR, any vehicle should disregard the message, as the
RA would not be able to revoke such a key. In case a vehicle sus-
pects malicious behavior of a vehicle, it reports the corresponding
pseudonym to the RA (Step 5). Let’s assume a number of reports
containing a misbehaving vehicle’s pseudonym have been already
issued to the RA, and the decision to revoke the vehicle has been
made based on strong evidence.

The RA does not perform any pseudonym resolution to discover
the identity of the misbehaving vehicle. Instead, it initiates the
revocation protocol by creating a signed revocation message using
its secret key and broadcasts this to all vehicles containing the public
pseudonym key that needs to be revoked (Step 6). All vehicles
receive the revocation message, and their hosts are required to

forward them to their corresponding TCs (Step 7). It is the TC of the
revoked vehicle which is responsible for deleting the pseudonyms.

To be more precise, we differentiate between two kinds of revo-
cations: soft- and hard-revocation. Soft revocation means the RA
revokes a specific pseudonym that was used for signing the mes-
sage based on which the misbehavior policy violation was detected,
while hard revocation means revoking all pseudonyms associated
with a specific vehicle, thus, not allowing it to further participate
in the overall system as an authenticated participant. These two
revocation variants essentially reflect the current need for message-
based and identity-based revocation [14]: The first scenario might
be triggered when revocation needs to occur due to a technical
defect of a vehicle; i.e., malfunctioning sensor (thus, we want to
temporarily revoke his ability to participate in the system by not
allowing it to re-use this specific pseudonym). The second case
mainly deals with malicious attackers who need to be banned from
any subsequent communication as soon as possible.

Table 1: Notation used

Symbol Description

𝐸𝐾† Endorsement Key
𝐴𝐾† Authorization Key
𝐴𝐾𝑜𝑙𝑑

† Authorization Key from previous iteration
𝑅𝐴𝐾† Revocation Authority Key
𝐸𝑝𝐾† Ephemeral Key
𝐾𝐻𝑥 Key Handle identifying a loaded key (𝑥) in the Tc.

𝐸TMP, 𝐴TMPKey Creation Template 𝐸𝑝𝐾 and𝐴𝐾 respectfully
𝑃𝑑 A digest representing a governing policy

𝑟𝑖𝑛𝑑𝑒𝑥 A non-volatile index in𝑇 c containing 64 bits.
𝐴𝐶𝐼 A non-volatile index in𝑇 c containing 8 bits.
𝑟𝑏𝑖𝑡 Revocation bit(s).
𝐴LIMIT Max number of correct authorizations for𝐴𝐶𝐼
𝐴COUNT Current number of correct authorizations for𝐴𝐶𝐼
𝐴𝐶𝐼𝑜𝑙𝑑 An instance if𝐴𝐶𝐼 from previous iteration
𝜎𝑥 Cryptographic signature
𝐻 A hash output (digest)
_ A set of hard revocation and soft revocation policy (leaf digests, l)
𝛽 A compound policy (of branch digests, b) to satisfy to allow revocation.
P A set of 𝛽 plus initial write policy.

𝑃Auth Final policy digest (𝑃𝑑) of all data in P signed by𝐴𝐾
𝑡 A ticket generated by𝑇 c proving verification of a signature.

† An asymmetric keypair, containing both public and a private key, denoted 𝑥𝐾𝑝𝑢𝑏
and 𝑥𝐾𝑝𝑟𝑖𝑣 .

3 CONCEPTUAL PROTOCOL OVERVIEW

In this section, wemake a high-level overview of our protocol, show-
casing how we can implement policy regulations for governing the
pseudonyms using the functionality of the Trusted PlatformModule
(TPM) been used as the trusted component [22]. More specifically,
we present how we leverage an internal, tamper-proof register
of the TPM, where each bit represents the state of a pseudonym.
Creating such a register, or index, in a way that remains tamper-
proof for even the host requires deep analysis of the TPM and its
internal functions. In the remainder of this paper, the symbols and
abbreviations depicted in Table 1 are adopted.

3.1 Soft- and Hard-Revocation

We refer to the tamper-proof index of the TPM as Revocation Index.
It has 64 bits, and each bit represents the state of a pseudonym, i.e.,
a set bit means revoked; otherwise, the pseudonym can be used for
anonymous message signing (DAA SIGN). We consider two cases:
Revocation of a single pseudonym, namely soft revocation, is rather

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Benjamin Larsen et. al.

HRB

RB
PS1

...

r1

TPM Key Memory TPM Storage

DAA Key

PS63 PSn ...

...

...

...

...

r2

...

...

RB
PS2

RB
PS63

RB
PS254

...

...

...
PS

rn

...

RB
PSn

...
...

PS2

RB
PS64

RB
PS127

...PS64

...

PS1 PS127

...
...

Figure 2: Pseudonyms in TPM, linked to different indexes

that shares the same hard revocation bit

straightforward. As we trust the TC managing the keys, it will be
asked to set the key’s respective revocation bit to a “revoked state”.
On the other hand, hard revocation refers to the possibility of being
able to use one of the 64 bits to revoke all pseudonyms in a single
round. This means that the DAA key should be linked to the first
bit of the Revocation Index, while the pseudonyms are linked to
one of the other 63 bits, as well as the first (hard revocation) bit.

We must accommodate the possibility that different authorities
govern different areas of the vehicular network, i.e., an RA in one
domain should not be allowed to revoke pseudonyms linked to an-
other domain. Therefore, we must protect each bit in the revocation
index, allowing only predetermined RAs to execute a revocation
process.This can be achieved by building policies for each pseu-
donym, representing the command being executed (set bit) with
particular parameters (which bit). A particular RA must sign these
to authorize a revocation. We refer to them as revocation hashes
and each pseudonym is linked to the following: one for soft revo-
cation and one for hard revocation. These revocation hashes are
registered with the RA, who must sign them before using them
in the revocation process. It should now be clear that the hard re-
vocation hash must include both the hard-revocation bit and the
pseudonyms’ unique soft-revocation bit. If this is not the case, the
hard-revocation hash for all linked pseudonyms would be equal, as
they are to be signed by the same RA and setting the same bit. By
including the soft-revocation bit, we "blind" the revocation hash.

Pseudonym limitations. Since the size of the Revocation Index is
64 bits and given we need one for the hard revocation, we can
revoke only 63 pseudonyms with this index, which is not enough to
cover the requirements of vehicular applications. A naive approach
to support more pseudonyms would be to create more revocation
indexes and having a new DAA key for each one, following the
same principle. However, this poses two distinct problems: first, the
DAA Setup and Join phases are very time-consuming and require
communication with the Issuer. Secondly, only 63 pseudonyms can
be linked together in the TPM, making hard revocation of a larger
set impossible. Therefore, we create multiple revocation indexes
using all of their bits for soft revocation and we maintain only one
hard revocation bit to be the one defined in the initial revocation
index. So all pseudonyms share the same hard revocation bit, mean-
ing hard revocation hashes would be equal for all pseudonyms
having soft revocation bits in other indexes. An example of this is
shown in Figure 2, where all pseudonyms linked to the DAA key
share a common hard revocation bit (first bit of 𝑟1), while their
corresponding soft revocation bits span several revocation indexes.

With the current implementation of the TPM, it is not possible
to set multiple bits in different indexes, which means they would

have to be executed as two commands, removing the "blinding" of
the hard revocation hash. To combat this challenge, we propose
that the hard-revocation hash represents a command that sets the
hard revocation bit and any other unique combination of bits in the
index, allowing for 263 pseudonyms with a unique hard-revocation
index. This requires that the revocation index’s bits are revocable
only by a single RA; otherwise, an anonymizing mask could cause
the unintentional revocation of keys linked to another revocation
domain. To support multiple RA domains in a single index, the
number of linked pseudonyms is limited to 2𝑛 where 𝑛 represents
the available bit space for each pseudonym set. For instance, with a
single index and considering a single RA the limit is 263, with two
RAs it is 231, and so forth. However, it is possible to use different
indexes if more are needed. As the TPM is limited in its internal
storage to a minimum of 1600 bytes (for automotive), out of which
12800 bits can be used for managing pseudonyms, considerations
should be made to reduce the number of indexes used.

3.2 Building the Protocol

It should now be evident that we protect the revocation index with a
set of policies. This, however, raises an interesting challenge: When
we write a policy that determines what parameters must be used,
a so-called command parameter hash must include the name1 of
the entity it applies to - in this case, the revocation index. As the
policy is intended for the index, it is included in its public part. The
index’s name depends on the policy, and the policy depends on the
index: we, therefore, have an infinite hash loop.

To avoid this hash loop, we use a different approach2 where a
unique key, referred to as Authorization Key (AK), authorizes the
policy (Figure 3). The process is that any policy signed by the AK
is considered a valid policy. The revocation index’s actual policy
digest is the name of the authorizing key, and in order to satisfy
that policy, one must have the policy signed by the AK. The index
and revocation policies, therefore, are no longer coupled together.
However, this approach raises another obstacle: we must guarantee
that the AK can only sign a single policy. If not, the host can sign
any policy to comply with and control the revocation index.

To address this challenge, we protect the AK by yet another pol-
icy. This policy must dictate how many times the host can use the
key.We do this by creating an additional index, called theAuthoriza-
tion Counter Index (ACI), and protecting it by a PIN or password as
an authorization value. The ACI contains two parts: Authorization
Counter and Authorization Limit. We use this index to create the
authorization key policy by leveraging PolicySecret functionality.
This policy states that we must prove our knowledge of the ACI’s
secret by authenticating with it. Every time the password is used
for this index, the internal counter increments. When the counter
reaches the pre-determined limit, it fails. With this index, we can
define the AK policy as the correct authentication with the ACI,
meaning that we must perform (password) “proof-of-knowledge”
for that index, therefore, incrementing the counter and limiting the
use of the key to the authorization limit of 3 + 1, where the first
three authorization processes are for: i) writing the authorization
limit, ii) authorizing the final policy digest, and iii) activating the
revocation index. The last authorization is required for the AK to
1Name is a hash of the public parameters of an entity, including its policy.
2This was identified as a solution in collaboration with the TPM WG of TCG.

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

Protects

Authorization Key (AK)

Protects

Ephemeral Key (EpK)

Protects

Authorization Counter Index
AuthCount: n
AuthLimit: m

Policy
Signed

EpK

Authorizes

Policy
Secret

ACI

Revocation Index
Policy

Authorize
AK

Governs

Revocation
Policies

Replaces

DAA

Policy
NV

(Soft = 0
Hard = 0)

0
Hard

1
Soft

... 63
Soft

PS63PS1

Figure 3: Protocol Functionality and Lifecycle

be used once as the Ephemeral Key in order to make the next ACI
immutable. Now the host can still re-create the ACI and, therefore,
reset the counter and infer additional authorizations. To overcome
this limitation, we protect the update of the ACI by setting a policy
that requires a signature from an Ephemeral Key - that is, a key
that only exists during the initial setup, therefore, making the ACI
immutable. A straightforward way is to create the ephemeral key
in TC’s NULL hierarchy. In this way, the host cannot recreate the
key since the NULL hierarchy seed is reset on reboot.

Looking over this set of required tasks, it becomes cumbersome
that the reboot is necessary for each revocation index created. It
is neither efficient nor safe to reboot the Electronic Control Unit
(ECU) after 64 pseudonyms have been used. One solution is to give
the Authorization Key one additional authorization and use this as
the ephemeral key for the next ACI. This has the same effect as a
reboot and will render the ACI immutable after the initial write.

Following this approach, we can successfully initialize both the
ACI and the revocation index. Before the host can start using the
keys, it must initiate the revocation index by updating it; otherwise,
it is unusable. In order to guarantee that this initial write-operation
can only happen once, we will give the AK an additional authoriza-
tion and sign a digest allowing the initial write.

4 ARCHITECTURAL DETAILS & PROTOCOLS

4.1 Authorization Counter Index

The initial phase of creating the Primordial Authorization Counter
Index can be seen in Figure 9 in Appendix A.3. As can be seen, the
host must provide an index identifier, template, and authorization
limit. As a potentially untrusted host can process such information,
this underlines why a trusted entity should verify the index in order
to further weaken the trust assumptions regarding the trustworthi-
ness of the host (Appendix A.2). The first thing to be executed is
the creation of the Ephemeral Key in the NULL hierarchy. This can
be verified by a certification process that documents the key and
TC’s validity as well as the current boot count.

To create the index, the host creates a policy based on the Ephemeral
Key and instructs the TC to define the space with a random secret.

The secret is essentially a password; however, the endmost goal is
to use it as a usage counter. Hence there is no need to keep it secret.

The policy defined earlier must be complied with to write the
authorization limit to the index, so the host uses the Ephemeral
Key to sign a nonce. After complying with the policy, writing the
authorization count, and inherently incrementing the authorization
count, the key should be rendered inoperable by executing a reset.
After the reset has been completed, the index can be certified by the
endorsement key. Such a certificate can be used to prove that the
index has a specific authorization limit, and the current boot count
proves the reset has been executed. After the reboot, the ACI is
guaranteed immutable and is prepared to act as a guard for limiting
the number of times the upcoming authorization key can be used.

4.2 Revocation Index

Before initializing the revocation index, we need to create the AK
and link it to the ACI. As depicted in the first line of Figure 7, in
Appendix A.3, the host builds a PolicySecret policy based on
the ACI name: In order for the host to use the key, it needs to
provide the secret for the ACI, thus, resulting in the increment of
the authorization counter. This policy is embedded in the template
for the key, and in the future, only this template with this specific
policy will allow the correct AK recreation.

As with other entities, the created key can be certified and signed
by the Endorsement Key for later verification. To create the index,
the host calculates a new policy digest that links the index’s us-
age to the AK by leveraging the PolicyAuthorize functionality -
meaning that any policy signed by the authorization key is valid.
The index is now built within the trusted component, and its policy
depends on what the authorization key signs in the next phase.

4.3 Generate Final Policy Digest

The policy digest to be authorized by the AK is calculated follow-
ing the steps described in Algorithm 1. Recall that the policy is a
compound policy built by logical AND and OR statements. We can
visualize this logical composition, as depicted in Figure 8, Appen-
dix A.3, where we can see that two policies must be true in order to
produce 𝑙1 or 𝑙2. The first would be setting the soft revocation bit
while the latter for updating the hard revocation bits. Either of these
will satisfy the OR operation, producing 𝑏1, which in turn is an input
to a final OR operation. More specifically, if the RA provided an au-
thentic signature with a parameter either a hard- or soft-revocation
hash (that is unique to a key), this is a valid branch for a single
pseudonym, and its revocation will take place. Each branch digest 𝑏
represents a valid soft- or hard revocation for a single pseudonym.
An OR operation may take up to 8 input parameters; hence, it might
be necessary to have multiple layers of these operators.

It is possible to calculate these by executing the commands in a
trial session of the TC, but we showcase this by calculating it on the
host. From an implementation standpoint, we start by initializing
our variables and continue to define our very first branch digest:
the activation. Recall that we have to update the index before it can
be used. To ensure this can only be performed once, we leverage
the AK’s use-limit property and allow an initial write to the index.
We then continue into a loop where we iterate over all revocable
pseudonyms: For each of the keys, we create two leaf digests, 𝑙1 and
𝑙2. We also initiate 𝑆𝑑𝑎𝑡𝑎 and 𝐻𝑑𝑎𝑡𝑎 , representing the parameters

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Benjamin Larsen et. al.

used in the SetBits command: the bits being set. We increment the
anonymizer and set the 𝐻𝑑𝑎𝑡𝑎 , thereby ensuring the uniqueness
of the parameter hash. After having anonymized the data, we can
set the respective hard- and soft revocation bits and continue cal-
culating the respective revocation hashes. We see 𝑘.𝑠𝑟𝑖 .𝑛𝑎𝑚𝑒 , the
pseudonym 𝑘’s soft revocation index’s name, and ℎ𝑟𝑖 representing
the hard revocation index.

With this data, we can calculate the soft- and hard revocation
leaf digests, 𝑙1, 𝑙2, and then calculate the branch digest 𝑏. This is
inserted into 𝛽 , the list of all branch digests, and then we loop again.
When all 𝑏’s are inserted into 𝛽 , we can calculate the final digest to
be authorized during the activation of the revocation index.

4.4 Activate Revocation Index

Before we can use the revocation index, we must update it, which in
our case is setting it to zero. Recall that the policy is built to allow a
write to the index if the AK provides a signature over the command
to execute. The policy is not authorized yet, so the first task that
the host needs to perform is to prepare the values to be hashed
and signed: hashing the final policy and generating the command
parameter hash for the initial write. It then continues to gain access
to the AK by providing the ACI’s secret, inherently incrementing
the authorization count.

Now the host can get a signature over the policy and acquire a
verification ticket: A ticket guarantees that it is this particular TC
that has verified the signature, therefore, guaranteeing the com-
mand and its parameters have been correctly authorized.

To gain (writing) authorization privileges, the host initiates a
new session and executes one of the index’s valid policies, namely
the PolicySigned with the previously acquired signature over the
zero-write command parameter hash. The current session digest
should now match the branch digest 𝑏0, and the host executes
PolicyOR with 𝛽 . After a successful verification from the TC, it
will replace the session digest with a concatenation of all provided
branch digests in 𝛽 , which should be the index’s authorized policy.
The host executes PolicyAuthorize with the previously acquired
ticket and signature. The TC then verifies the ticket, the signature,
and finally, the session digest (whether it matches the authorized
digest). If this is the case, the TC replaces the session digest with
the AK’s name: the policy digest for the index. The host can now
execute a write operation, and the index has been activated.

While it is now possible for the host to update the index, a
possibly compromised host does not have any incentive to write
anything but zeroes, as it would set pseudonyms in an initially
revoked state. At the end of this phase, the index has been correctly
activated and set. Furthermore, the final policy calculated in the
previous step has also been authorized. It is now ready to be used
for managing the revocation states of pseudonyms. As with the
primordial ACI, the index has been initialized with an authorization
limit and counter and is immutable. The index can also act as a
protector for regulating a new AK.

4.5 Initialize New Authorization Counter Index

To initiate a new ACI, we must guarantee immutability by using an
old AK, as it will only have a single authorization left, based on the
previously defined ACI. Thus, we start by creating a policy digest
based on PolicySigned and the name of the old AK.We then define

Figure 4: Activate Revocation Index

Provision revocation index: Tc ⇌ Host
𝐴𝐶𝐼, PIN, 𝐴TMP, P, 𝛽, 𝑟𝑖𝑛𝑑𝑒𝑥

CreatePrimary(𝐴TMP, Owner)

𝐷 := KDF(HierarchySeed(Owner), 𝐴TMP)
𝐾𝐻𝐴𝐾 , 𝐴𝐾 := CreateKey(𝐷)

𝐾𝐻𝐴𝐾 , 𝐴𝐾𝑝𝑢𝑏

𝐻𝑃 := hash(P)
𝐻𝑐𝑝 := hash(𝐶𝐶𝑁𝑉 _𝑆𝑒𝑡𝐵𝑖𝑡𝑠 | |
𝑟𝑖𝑛𝑑𝑒𝑥 .𝑛𝑎𝑚𝑒 | | 0, 0..0)
𝐻0 := hash(𝑇𝐶𝑑𝑎𝑡𝑎 | | 𝐻𝑐𝑝)

StartAuthSession

fresh 𝑆

PolicySecret(𝐴𝐶𝐼, PIN)

𝑃𝑎 := GetAuth(𝐴𝐶𝐼)
𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑐𝑟𝑒𝑡 | | 𝐴𝐶𝐼 .name)
⇐⇒ 𝑃𝑎 = PIN ∧𝐴𝐶𝐼 .𝑝𝑖𝑛𝐶𝑜𝑢𝑛𝑡 + + < 𝐴𝐶𝐼 .𝑝𝑖𝑛𝐿𝑖𝑚𝑖𝑡

𝑆ign(𝐻𝑃 , 𝐾𝐻𝐴𝐾)

𝑃𝑑 := GetPolicy(𝐴𝐾)
𝜎𝑃 := 𝑆ign(𝐻𝑃 , 𝐴𝐾𝑝𝑟𝑖𝑣)
⇐⇒ 𝑃𝑑 = 𝑆

𝑃Auth

StartAuthSession

fresh 𝑆

PolicySecret(𝐴𝐶𝐼, PIN)

𝑃𝑎 := GetAuth(𝐴𝐶𝐼)
𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑐𝑟𝑒𝑡 | | 𝐴𝐶𝐼 .name)
⇐⇒ 𝑃𝑎 = PIN ∧𝐴𝐶𝐼 .𝑝𝑖𝑛𝐶𝑜𝑢𝑛𝑡 + + < 𝐴𝐶𝐼 .𝑝𝑖𝑛𝐿𝑖𝑚𝑖𝑡

𝑆ign(𝐻𝑃 , 𝐾𝐻𝐴𝐾)

𝑃𝑑 := GetPolicy(𝐴𝐾)
𝜎𝑃 := 𝑆ign(𝐻0, 𝐴𝐾𝑝𝑟𝑖𝑣)
⇐⇒ 𝑃𝑑 = 𝑆

𝜎0

VerifySignature(𝜎𝑃 , 𝐾𝐻𝐴𝐾 , 𝐻𝑃)

𝑡 := ComputeTicket(𝐻𝑃 , 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ VerifySignature(𝜎𝑃 , 𝐴𝐾𝑝𝑢𝑏 , 𝐻𝑃)

𝑡

StartAuthSession

fresh 𝑆

PolicySigned(𝜎0, 𝐻𝑐𝑝 , 𝐾𝐻𝐴𝐾)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ VerifySignature(𝜎0, 𝐾𝐻𝐴𝐾 , 𝐻𝑐𝑝)

PolicyOR(𝛽)

𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑅 | | 𝛽)
⇐⇒ 𝑆 ∈ 𝛽

PolicyAuthorize(𝑡,𝐴𝐾𝑛𝑎𝑚𝑒 , 𝐻𝑃)

𝑡 ′ := RecomputeTicket(𝐻𝑃 , 𝐴𝐾𝑛𝑎𝑚𝑒)
𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 | | 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ 𝑆 = 𝐻𝑃 ∧ 𝑡 ′ = 𝑡

SetBits(0..64 = 0)

𝑃𝑟 := GetPolicy(𝑟𝑖𝑛𝑑𝑒𝑥)
SetBits(0...64 = 0)
⇐⇒ 𝑆 = 𝑃𝑟

a bit-space with that policy. Since we have a single authorization
left in our AK, we can now create this new key. Recall that in order
to use this key, we must execute PolicySecret and provide the
PIN to the previous ACI. Thus, we need to provide a signature,
based on the old key, and execute the PolicySigned command.

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

Figure 5: Initialize New Authorization Counter Index

Initialize ephemeral index: Tc ⇌ Host
𝐸TMP, 𝐴𝐶𝐼,𝐴𝐾𝑜𝑙𝑑 , 𝐴TMP, 𝐴LIMIT

𝑃𝑑 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐴𝐾𝑜𝑙𝑑name)
PIN := Rand()

DefineSpace(𝑃𝑑 , 𝐴𝐶𝐼, PIN)

CreateSpace(𝐴𝐶𝐼, PIN, 𝑃𝑑)
⇐⇒ SpaceNotDefined(𝐴𝐶𝐼)

CreatePrimary(𝐴TMP, Owner)

𝐷 := KDF(HierarchySeed(Owner), 𝐴TMP)
𝐾𝐻𝐴𝐾 , 𝐴𝐾 := CreateKey(𝐷)

𝐾𝐻𝐴𝐾 , 𝐴𝐾𝑝𝑢𝑏

𝐻1 := hash(𝑇𝐶𝑑𝑎𝑡𝑎)

StartAuthSession

fresh 𝑆

PolicySecret(𝐴𝐶𝐼𝑜𝑙𝑑 , PIN𝑜𝑙𝑑)

𝑃𝑎 := GetAuth(𝐴𝐶𝐼𝑜𝑙𝑑)
𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑐𝑟𝑒𝑡 | | 𝐴𝐶𝐼𝑜𝑙𝑑 .name)
⇐⇒ 𝑃𝑎 = PIN ∧𝐴𝐶𝐼𝑜𝑙𝑑 .𝑝𝑖𝑛𝐶𝑜𝑢𝑛𝑡 + + < 𝐴𝐶𝐼𝑜𝑙𝑑 .𝑝𝑖𝑛𝐿𝑖𝑚𝑖𝑡

Sign(𝐻1, 𝐾𝐻𝐴𝐾)

𝜎𝑤 := Sign(𝐻1, 𝐴𝐾𝑝𝑟𝑖𝑣)
⇐⇒ 𝑃𝑑 = 𝑆

𝜎𝑤

PolicySigned(𝐾𝐻𝐴𝐾 , 𝜎𝑤)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ VerifySignature(𝐴𝐾𝑝𝑢𝑏 , 𝜎𝑤)

Write(𝐴𝐶𝐼, PIN, 𝐴LIMIT)

𝑃𝑑 := GetPolicy(𝐴𝐶𝐼)
𝑃𝑎 := GetAuth(𝐴𝐶𝐼)
Write(𝐴𝐶𝐼,𝐴LIMIT)
⇐⇒ 𝑆 = 𝑃𝑑 ∧ 𝑃𝑎 = PIN

AuthCounter(𝐴𝐶𝐼) := AuthCounter(𝐴𝐶𝐼) + 1

4.6 Revocation

Upon receiving a (potential) revocation message, the host loads
the corresponding RA’s public key into the TC. The received mes-
sage contains the public pseudonym key, 𝑝𝑘𝑝𝑠 , which needs to be
revoked, and a revocation hash and signature; i.e., of the respec-
tive revocation index, 𝑟𝑖𝑛𝑑𝑒𝑥 and (hard or soft) revocation bit, 𝑟𝑏𝑖𝑡 .
Recall that the policy for gaining write-access to the revocation
index includes both PolicySigned (verifying that the message orig-
inates from the correct RA responsible for the trust domain where
the vehicle also belongs to) and PolicyCpHash (correct revocation
bit(s)): both these policies must be correctly satisfied before the TC
allows the successful revocation. Executing these processes should
produce a valid leaf digest (the result of the hashing done in the
TC after PolicyCpHash is executed, also noted as 𝑙𝑥), validated by
executing PolicyOR with a reference list of the possible leaf digest
(_) for that specific branch. Suppose the leaf digest matches a digest
in the reference list. In that case, the session digest is replaced by
a hash of the reference list: the branch digest, verified by an addi-
tional PolicyOR. We depict the execution of these policy commands
in Figure 6 where it is highlighted that PolicyOR will replace the
current session digest with a hashed concatenation of all provided
reference branch digests (𝛽) if and only if the current session digest
is in the provided reference. If the reference list is unaltered, the
hashed concatenation should be the authorized policy, which is ver-
ified by executing PolicyAuthorize with an authorization ticket,
the name of the authorizing key, and, of course, the authorized
policy. If the session digest matches the approved policy, then it is
replaced by the hash of the command code of PolicyAuthorize
and the authorizing key’s name, which is the policy for the revo-
cation index. The host can now execute a write to the index, but

Figure 6: Revoking Vehicle’s Pseudonyms & DAA Key Pairs

Revoke: Tc ⇌ Host
𝑡, 𝑃Auth𝐴𝐾, 𝑟𝑖𝑛𝑑𝑒𝑥

𝑃Auth, 𝑟𝑏𝑖𝑡 , 𝑅𝐴𝐾𝑝𝑢𝑏

𝐻𝑥 , 𝜎𝑟 , _ ∈ 𝛽, ∈ P

LoadExternal(𝑅𝐴𝐾𝑝𝑢𝑏)

𝐾𝐻𝑅𝐴 := LoadExternal(𝑅𝐴𝐾𝑝𝑢𝑏)

𝐾𝐻𝑅𝐴

StartAuthSession

fresh 𝑆

PolicySigned(𝐾𝐻𝑅𝐴, 𝜎𝑟 , 𝐻𝑥)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝑅𝐴𝑛𝑎𝑚𝑒)
⇐⇒ VerifySignature(𝑅𝐴𝐾𝑝𝑢𝑏 , 𝜎𝑟 , 𝐻𝑥)

PolicyCpHash(𝐻𝑥)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑝𝐻𝑎𝑠ℎ | | 𝐻𝑥)

PolicyOR(_)

𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑅 | | _)
⇐⇒ 𝑆 ∈ _

PolicyOR(𝛽)

𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑅 | | 𝛽)
⇐⇒ 𝑆 ∈ 𝛽

PolicyAuthorize(𝑡,𝐴𝐾𝑛𝑎𝑚𝑒 , 𝑃Auth)

𝑡 ′ := RecomputeTicket(𝑃Auth, 𝐴𝐾𝑛𝑎𝑚𝑒)
𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 | | 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ 𝑆 = 𝑃Auth ∧ 𝑡 ′ = 𝑡

SetBit(𝑟𝑏𝑖𝑡 , 𝑟𝑖𝑛𝑑𝑒𝑥)

𝑃𝑑 := GetPolicy(𝑟𝑖𝑛𝑑𝑒𝑥)
𝑁𝑉 (𝑟𝑖𝑛𝑑𝑒𝑥)𝑟𝑏𝑖𝑡 := 1 ⇐⇒ 𝑃𝑑 = 𝑆

only with the parameters used in the PolicyCpHash, ensuring the
correct bits are set; hence, the right pseudonym(s) are revoked.

Once all required pseudonyms, and their DAA key pairs, are
deleted, the TC responds to the vehicle with a signed revocation
confirmation 𝜎𝑟 𝑣𝑘 which is then sent to the RA. Upon reception
of the revocation confirmation, the RA verifies that this is signed
by the same TC that issued the pseudonym certificate that was
revoked, thus, implying that the correct vehicle has revoked itself.
The entire signature can be verified using the DAA VERIFY. By the
end of this protocol, there are strong guarantees that the vehicle in
question has been revoked without the need for any pseudonym
resolution. The RA has verifiable evidence from the vehicle that it
has performed the revocation enforced by the TC.

We have to note here that in case an attacker intercepts this
revocation message, or a malicious vehicle host blocks the revoca-
tion message intended for the TC (Section 5.1, then the revocation
process will not be triggered, and the vehicle’s TC will not respond
back with a revocation confirmation (note that this is also an is-
sue for Rewire [7] and O-token [26]). In order for the revocation
to take effect in this case, the TC needs to detect that this has
occurred. This can be achieved by a heartbeat mechanism, such
that the TC periodically expects either a revocation message or
a heartbeat (which may be a revocation intended for some other
TC, or else a timed message). Revocation messages and heartbeats

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Benjamin Larsen et. al.

include information about the period they are intended for; thus, a
heartbeat for one period cannot be used at a different time. They
are signed by the RA, so they cannot be tampered with or spoofed,
and only one message is generated by the RA for each time period.
Failure to receive a heartbeat message (or a series of messages so
as to allow possible limited connectivity) can act as an indication
for potential misbehavior that can also trigger revocation by the
TC. In order to improve the safety level provided, this mechanism
can make use of the types of heartbeat messages already provided
for monitoring the status of one-hop vehicular topologies so as to
produce indistinguishable communications and diminish the revo-
cation vulnerability window existing in conventional CRLs [13].

5 SECURITY MODEL

In this section, we discuss the proposed DAA-based soft- and hard-
revocation solution with respect to the achieved security and pri-
vacy properties. We consider the following roles within the scope
of our analysis to be Vehicles, TCs, and RA.

5.1 Threat and Adversarial Model

Vehicular Communication systems are susceptible to both outsider
and insider adversaries [25]. The former are unauthorized entities
(i.e., no credentials or trust relationships with other system entities)
that seek to compromise the system and disrupt its operation. In
contrast, the goal of an insider attacker would be to intercept, block
or modify network communications. More specifically, an internal
adversary can have an already calculated attack strategy, prior to
joining the system, aiming to disrupt the overall set of the aforemen-
tioned trusted computing and revocation services. Assuming that it
is impractical to break the cryptographic protocols, the main attack
vector would be to try and obtain a vehicle’s DAA credentials in
order to perform a malicious action and then ignore the revocation
process; by trying to manipulate any of the setup phases of our
protocol (Section 3.2) so that it can continue using any revoked
pseudonyms. Adversaries are primarily vehicles or witnesses in
the system. However, this does not exclude “Honest-but-Curious”
(HBC) infrastructure entities who represent legitimate participants
with an endmost goal of breaching a vehicle’s privacy. The HBC
does not deviate from the defined protocol rules but possibly learns
information from legitimate message exchange and information
monitoring. For instance, a malicious entity inside the RA could try
to link the (revoked) pseudonyms back to the originating TPM and,
thus, track the host vehicles.

5.2 Security Analysis

The security assurances rest both on the TCs within the vehicles
and the correct calculation of the ACIs and revocation indexes
(Appendix A.2 highlights how to weaken this later trust assumption
by offloading the index verification process to the Issuer) to provide
the security guarantees of the correct execution of the revocation
process. We consider the following key properties.

PseudonymRevocationUnlinkability:This property requires
that no entity should able to link multiple pseudonyms, either when
used for anonymous message signing or when deemed malicious
and need to be revoked, back to the originating vehicle. In the setup
phase of our protocol (Section 3.2), we can generate pseudonyms
achieving this notion of adaptable unlinkability, meaning that it

should be the vehicle that can adaptably control whether or not
any two pseudonyms can be linked by a particular entity (i.e., RA).
Our protocol guarantees that these properties hold throughout a
pseudonym’s lifecycle and that unlinkable pseudonyms retain that
property during the revocation phase. Revocation in our protocol is
solely based on hashes (Section 4.6). Since these contain at least one
unique bit and an optional anonymization mask in the revocation
index (Section 4.4), no other entity (be it a Vehicle or even the RA)
can compare the two hashes to gain any advantage on the identity of
the origin vehicle. Despite the additional (soft-) revocation variant
that is not provided by any other existing DAA-based revocation
scheme, our protocol supports adaptable unlinkability by allow-
ing the establishment of multiple DAA key pairs, thus, enabling
the provision of both absolute- and conditionally-unlinkable set of
pseudonyms depending on the requirements of the envisioned use
case (collision avoidance vs. infotainment). Existing schemes [14]
either use signature-based DAA revocation, which always links
pseudonym values to signatures in order to retain centralised re-
vocation capabilities, or still use Certificate Revocation Lists [17]
where for each revoked pseudonym, a (trusted) verifying entity
needs to generate a proof of non-revocation, thus, making strong
assumptions on the Verifier’s correctness.

Revocation Assurance: A key requirement of the revocation
mechanism is to provide strong guarantees that when an RA has
initiated and run the protocol to completion, the revoked vehicle
will not be able to provide valid signatures to any other entity.
When the revocation process is executed, as defined in Section 4,
pseudonyms deemed as revoked are guaranteed to be inoperable.
As the pseudonyms can only be decrypted and used inside the TPM,
the signing key’s usage policy needs to be satisfied and verified by
the TPM - which by definition is trusted. The revocation process
ensures that these policies can be satisfied if and only if all policy
digests have been calculated correctly (Section 4.3), and under the
minimal trust assumptions (Section 3.2), it is impossible to reverse
the process. By including the Issuer in the pseudonym creation
phase, these trust assumptions could be further weakened, as de-
scribed in Appendix A.2. In existing DAA-based revocation schemes,
the DAA key is revoked, rendering all pseudonyms inoperable. The
host must therefore contact the Issuer and reobtain a new DAA key
and create new pseudonyms. They, therefore, suffer from significant
computational and communications costs that increase proportion-
ally to the number of revoked/created pseudonyms. This drawback
renders such schemes impractical when the number of pseudonyms
grows beyond a relatively modest size. In contrast, with our proto-
col, we can revoke individual or subsets of pseudonyms without
rendering the DAA key revoked, allowing for a more flexible and
efficient revocation, thus, reducing the dependencies on the Issuer.

Coerced Revocation An insider attacker can also exhibit a
more random attack behavior aiming to evade the revocation pro-
cess by either an intentional misbehavior, so as to hide the existence
of another “stealthy” compromised vehicle, or posing as multiple
vehicles (acting as a Sybil entity [5]). In practice, this requires an
adversary using another vehicle’s pseudonyms by either trying
to re-create them or migrate them to its own TPM. Recall that
all pseudonyms are children keys of (encrypted by) the DAA key
which in turn is a child key of the vehicle’s TPM Endorsement Key.
Even if two adversaries were to share pseudonyms, they cannot

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

load (and decrypt) such key hierarchies that have been created by
another TPM. This assurance is provided by the TPM, as the trusted
platform, and its internal key storage as well as the need to establish
an authenticated session before accessing such key handles (only
the original creating process has such privileges). This property
when considered together with the fact that pseudonym signing
keys cannot be used until they are activated, thus, controlling the
number of stored pseudonyms that are simultaneously valid at
any point in time, renders our protocol (in contrast to the other
DAA-based schemes [14, 17]) Sybil-secure.

6 PERFORMANCE EVALUATION

In this section, we analytically evaluate the computational com-
plexity and overhead posed by our protocol. Our solution avoids
several of the shortcomings of the revocation solutions in PKI sys-
tems [7, 11, 20] and namely: a) it does not require pseudonym
resolution in order to trace a pseudonym back to the misbehaving
vehicle’s long-term identifier, b) it does not require the use and
distribution of CRLs, and c) the vehicles do not need to periodically
connect to the RA for "pulling" the latest version of the revocation
blacklist. So, our solution minimizes bandwidth and connectivity
requirements since it is based on the broadcast of a short revocation
message containing the pseudonym of the misbehaving vehicle.

We focus the experimental evaluation on the computational com-
plexity and analyze the timing of the core phases, as described in
Section 4. We divide the operations into two classes - (1) offline and
(2) online. All the operations which can be either pre-computed or
not need to be executed in real-time are classified as offline opera-
tions (Section 4.1 - 4.5). The operations which need to be performed
in real-time are classified as online operations. These include the
computations at the TPM and the vehicle host for performing the
actual hard- and/or soft-revocation task (Section 4.6). The endmost
goal is to determine how computationally expensive each of these
sets of offline and online operations is and analyze their impact on
the overall feasibility of the protocol. Of course, we are particularly
interested in the critical online operations that need to be executed
more frequently and with strict time execution constraints.

6.1 Implementation Results

EvaluationEnvironment Setup&TestingMethods: Implemen-
tation was straightforward once the protocols were designed and
written in terms of the appropriate TPM calls (see Tables 2 to 5),
which also constitutes one of the novelties of this work since, to
the best of our knowledge, it is one of the first complete instanti-
ations of such a strong and provable revocation mechanism. The
protocols were implemented in C/C++ (Appendix A.1) and the IBM
implementation of a TPM software stack (IBM TSS v. 1.6.0) [16].

The experiments’ goal is to verify that the proposed solution is
functional and outline the phases needed to support it, and most
importantly, verify that near-constant revocation time is achiev-
able. It is, therefore, implemented as a single binary with multiple
entities since we opted out from considering the network latency in-
duced by vehicular mobility, which usually implies volatile network
connectivity. In all cases, our goal is to provide strong evidence on
efficient revocation service provision and demonstrate its efficiency
in comparison to other DAA-based approaches where the process
execution time is linear to the size of the revocation list [17].

Table 2: Initialize Primordial Authorization Counter Index

Activity Mean ± (95% CI)

Total Application Stack 578.20 ms 0.87 ms

Total TPM Stack 583.92 ms 0.67 ms

TPM2_CreatePrimary 259.69 ms 0.27 ms
TPM2_DefineSpace 30.04 ms 0.22 ms
TPM2_Sign 86.86 ms 0.20 ms
TPM2_StartAuthSession 18.22 ms 0.20 ms
TPM2_PolicySigned 132.57 ms 0.20 ms
TPM2_NV_Write 38.05 ms 0.30 ms
TPM2_FlushContext 9.14 ms 0.19 ms
TPM2_FlushContext 9.35 ms 0.21 ms

Table 3: Initialize Revocation Index

Activity Mean ± (95% CI)

Total Application Stack 317.81 ms 0.53 ms

Total TPM Stack 312.88 ms 0.42 ms

TPM2_NV_ReadPublic 12.68 ms 0.19 ms
TPM2_CreatePrimary 260.62 ms 0.42 ms
TPM2_FlushContext 9.63 ms 0.19 ms
TPM2_DefineSpace 29.94 ms 0.23 ms

The results are generated using a laptop with Intel(R) Core(TM)
i7-8665U CPU @ 1.90-2.11GHz. The protocols were then tested
on two hardware-based trusted component platforms: an Infineon
SLB9670 TPM [15] and a Nuvoton TPM so as to conduct a detailed
investigation of the parameters that may affect the execution time
of our revocation protocols. As can be seen in Section A.1, there is
a strong interdependence of the optimal correctness of the results
to the execution environmental setup and more specifically on the
type of TC leveraged.

Performance Analysis: Although not the focus of the paper,
we also opted to measure the actual timings for each one of the
DAA Phases in order to provide a more comprehensive overview
of the entire pseudonym lifecycle; from the creation to its secure
and privacy-preserving revocation (when needed). The DAA JOIN
and ISSUE protocols take up around 820 ms, while the creation and
certification of a pseudonym key (DAA CREATE) take up 420ms.
The DAA SIGN operation is relatively fast and requires 80ms. In
contrast, the DAA VERIFY is split into two operations: the verifica-
tion of the pseudonym key takes up 200ms, and the verification of
the ECDSA signature takes up 10ms.

As aforementioned, the most performance-heavy operations of
our protocol are the offline operations for initializing both the
ACI and RI as well as registering the revocation hashes to the RA.
Initializing the ACI, it’s evident that the TPM is responsible for
most of the incurred time overhead (Table 2). Indeed, the host’s
only operation is a simple hashing operation for the policy digest.
Interestingly enough, the accumulated time for TPM execution is
larger than the whole operation. This might be due to the multiple

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Benjamin Larsen et. al.

Table 4: Activate Revocation Index

Activity Mean ± (95% CI)

Total Application Stack 920.28 ms 1.02 ms

Total TPM Stack 931.99 ms 0.15 ms

TPM2_CreatePrimary 260.26 ms 0.27 ms
TPM2_StartAuthSession 17.78 ms 0.24 ms
TPM2_PolicySecret 25.01 ms 0.19 ms
TPM2_Sign 96.85 ms 0.30 ms
TPM2_FlushContext 9.23 ms 0.19 ms
TPM2_StartAuthSession 17.37 ms 0.25 ms
TPM2_PolicySecret 24.91 ms 0.19 ms
TPM2_Sign 97.28 ms 0.32 ms
TPM2_FlushContext 9.18 ms 0.19 ms
TPM2_VerifySignature 132.71 ms 0.21 ms
TPM2_StartAuthSession 17.94.67 ms 0.29 ms
TPM2_PolicySigned 132.82 ms 0.20 ms
TPM2_PolicyOR 9.89 ms 0.19 ms
TPM2_PolicyAuthorize 25.72 ms 0.21 ms
TPM2_FlushContext 9.32 ms 0.19 ms
TPM2_NV_SetBits 36.80 ms 0.26 ms
TPM2_FlushContext 8.90 ms 0.18 ms

Table 5: Revocation - Soft (S) and Hard (H)

Activity Mean (S) Mean (H) ± (95% CI)

Total App. Stack 327.71 ms 323.91 ms 0.93/0.98 ms

Total TPM Stack 349.66 ms 348.28 ms 0.71/0.65 ms

TPM2_LoadExternal 92.29 ms 92.31 ms 0.22/0.22 ms
TPM2_StartAuthSession 17.73 ms 17.56 ms 0.25/0.22 ms
TPM2_PolicySigned 133.62 ms 132.90 ms 0.22/0.20 ms
TPM2_PolicyCpHash 9.18 ms 8.90 ms 0.19/0.18 ms
TPM2_PolicyOR 9.51 ms 9.55 ms 0.19/0.19 ms
TPM2_PolicyOR 9.87 ms 9.75 ms 0.19/0.19 ms
TPM2_PolicyAuthorize 25.57 ms 25.66 ms 0.19/0.19 ms
TPM2_NV_SetBits 34.06 ms 33.31 ms 0.35/0.25 ms
TPM2_FlushContext 9.35 ms 9.20 ms 0.19/0.18 ms
TPM2_FlushContext 9.04 ms 9.14 ms 0.19/0.19 ms

initialization and deinitialization of the internal timing interfaces
used. However, the combined time of creating the primordial ACI is
rather efficient and applicable to environments where this is needed
to be executed multiple times. If new ACIs are needed, this time
will increase slightly, as the previous AK’s policies must be satisfied.
These include starting a new session and executing PolicySigned
and can be estimated to add a timing overhead of 45ms.

Moving towards the initialization of the revocation index (Ta-
ble 3), this requires even fewer resources. This is mainly due to the
limited operations taking place: the only actual operation being
executed is the creation of the revocation index itself. This is shown
in the context of a "worst-case" scenario where the ACI has to be

read, and the Authorization Key has to be recreated. The time re-
quired for the host operations is slightly higher since more hashing
operations are needed for creating the policy digest.

Activating the revocation index is the heaviest phase of the
protocol, as seen in Table 4. Obviously, the TPM is again consuming
most of the required resources. As described in Section 4.4, the AK’s
policy has to be satisfied twice: first for signing (authorizing) the
final digest and secondly for providing the signature for the initial
write in the revocation bits. However, recall that this is an offline
operation which means that there is no need for a vehicle to wait
till the previously created bunch of pseudonyms runs out before
creating and activating new pseudonyms and their RBs.

Finally, and more interestingly, we can see that both soft- and
hard-revocation take an equal amount of time, as shown in Table 5.
This is because the timing required is independent of the number
of bits to be set; 1 for hard revocation or multiple in the case of a
soft revocation, as it is essentially an OR operation of 64 bits.

Evaluation Analysis: From the above results, we observe that
all online operations incur significantly lower overhead (in the or-
der of 323, 91𝑚𝑠 for the pseudonym revocation and 640𝑚𝑠 for the
pseudonym creation) - in terms of computation - compared to the
existing DAA-based solutions that can take up seconds to conclude.
For instance, LASER [17] adds an overhead of 22% to this process
while VDAA [14] adds more than 50%. However, this comes at the
cost of higher offline overhead (2.5𝑠𝑒𝑐). Nonetheless, this trade-off
between offline and online computational costs is very advanta-
geous because the online computations occur significantly more
often than the offline ones. Also, as the online procedure requires
significantly lower latency than the offline procedure, this renders
our protocol more practical than existing schemes. Furthermore, as
a triggering point for the commencement of the revocation process
is the identification of a vehicles’ malicious behavior based on a
received CAMmessage which also entails the signature verification
of this broadcast message. the two major V2X standards both use
the ECDSA signature scheme [4]. Since our revocation protocol
also assumes the use of regular ECDSA signatures (signature used
in DAA) on broadcast messages, no additional overhead is incurred.

7 CONCLUSIONS

In this paper, we proposed a novel revocation scheme based on
the use of trusted computing technologies and, more specifically,
the Direct Anonymous Attestation (DAA) protocol. This secure
and privacy-preserving scheme supports trustworthy vehicle-local
verification, thus, overcoming the challenges of current solutions
that have been proposed in the standards based on the use of tradi-
tional PKIs. We have shown that our protocol achieves a significant
performance improvement over the prior state of the art by veri-
fying that near-constant revocation time is achievable even when
multiple pseudonyms are entailed. We have evaluated all of the
internal protocol phases through a qualitative analysis as well as
through an actual implementation on two TPM variants.

8 ACKNOWLEDGMENT

This work was partially supported by the European Commission,
under the ASSURED project; Grant Agreement No. 952697.

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

REFERENCES

[1] 5GAA Automotive Association. Oct. 2020. Privacy-by-Design Aspects of C-V2X.
White Paper. Available online at https://5gaa.org/wp-content/uploads/2020/11/
5GAA_White-Paper_Privacy_by_Design_V2X.pdf.

[2] Ernie Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct Anonymous Attes-
tation. In Proceedings of the 11th ACM CCS. 132–145.

[3] Liu Chunli and Tang Li Fang. 2012. The Application Mode in Urban Trans-
portation Management Based on Internet of Things. In Proceedings of the 2nd
International Conference on Electric Technology and Civil Engineering (ICETCE).

[4] The PRESERVE Consortium. 2011. Security Requirements of Vehicle Security
Architecture. Technical Report (June 2011).

[5] John R. Douceur. 2002. The Sybil Attack. In Peer-to-Peer Systems, First International
Workshop, IPTPS.

[6] European Commission. June 2018. Certificate Policy for Deployment and Opera-
tion of European Cooperative Intelligent Transport Systems (C-ITS).

[7] David Förster, Hans Löhr, Jan Zibuschka, and Frank Kargl. 2015. REWIRE –
Revocation Without Resolution: A Privacy-Friendly Revocation Mechanism for
Vehicular Ad-Hoc Networks. In Trust and Trustworthy Computing.

[8] D. Förster, F. Kargl, and H. Löhr. 2014. PUCA: A pseudonym scheme with user-
controlled anonymity for vehicular ad-hoc networks (VANET). In IEEE Vehicular
Networking Conference (VNC). 25–32.

[9] Thanassis Giannetsos and Ioannis Krontiris. 2019. Securing V2XCommunications
for the Future: Can PKI Systems Offer the Answer?. In Proceedings of the 14th
International Conference on Availability, Reliability and Security (ARES ’19).

[10] Stylianos Gisdakis, Thanassis Giannetsos, and Panos Papadimitratos. 2014. SP-
PEAR: Security & Privacy-preserving Architecture for Participatory-sensing
Applications. In Proceedings of the 2014 ACM Conference on Security and Privacy
in Wireless & Mobile Networks. 39–50.

[11] Stylianos Gisdakis, Marcello Lagana, Thanassis Giannetsos, and Panos Papadim-
itratos. 2013. SEROSA: SERvice oriented security architecture for Vehicular
Communications. In VNC. IEEE, 111–118.

[12] Philippe Golle and Kurt Partridge. 2009. On the Anonymity of Home/Work
Location Pairs. In Proceedings of the 7th International Conference on Pervasive
Computing (Nara, Japan) (Pervasive ’09). 390–397.

[13] J. J. Haas, Yih-Chun Hu, and K. P. Laberteaux. [n.d.]. Efficient Certificate Revoca-
tion List Organization and Distribution. IEEE J.Sel. A. Commun. 29, 3 ([n. d.]).

[14] C. Hicks and F. D. Garcia. 2020. A Vehicular DAA Scheme for Unlinkable ECDSA
Pseudonyms in V2X. In 2020 IEEE European Symposium on Security and Privacy
(EuroS P). 460–473. https://doi.org/10.1109/EuroSP48549.2020.00036

[15] Infineon Technologies AG. [n.d.]. Iridium SLB 9670 TPM2.0 Linux.
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670-
tpm2.0-linux// [Online; accessed 03-May-2019].

[16] International Business Machines. [n.d.]. IBM’s TPM 2.0 TSS Version 1119. https:
//sourceforge.net/projects/ibmtpm20tss/ [Online; accessed 03-May-2019].

[17] Vireshwar Kumar, He Li, Noah Luther, Pranav Asokan, Jung-Min (Jerry) Park,
Kaigui Bian, Martin B. H. Weiss, and Taieb Znati. [n.d.]. Direct Anonymous
Attestation with Efficient Verifier-Local Revocation for Subscription System. In
Proceedings of the 2018 on AsiaCCS. 567–574.

[18] Virendra Kumar, Jonathan Petit, and William Whyte. 2017. Binary Hash Tree
Based Certificate Access Management for Connected Vehicles. In Proceedings of
WiSec ’17. 145–155.

[19] M. E. Nowatkowski, J. E.Wolfgang, C.McManus, andH. L. Owen. 2010. The effects
of limited lifetime pseudonyms on certificate revocation list size in VANETS. In
Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon). 380–383.

[20] J. Petit, F. Schaub, M. Feiri, and F. Kargl. 2015. Pseudonym Schemes in Vehicular
Networks: A Survey. IEEE Communications Surveys Tutorials 17, 1 (2015).

[21] Marcos A. Simplicio, Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, and Marcos Vinicius M. Silva. 2019. ACPC: Efficient revocation of
pseudonym certificates using activation codes. Ad Hoc Networks 90 (2019).

[22] TCG. [n.d.]. TPM 2.0 Library - Trusted Computing Group. trustedcomputinggroup.
org/resource/tpm-library-specification/

[23] Trusted Computing Group. [n.d.]. Trusted Computing Platform Alliance (TCPA)
main specification. http://www.trustedcomputinggroup.org.

[24] J. Whitefield, L. Chen, T. Giannetsos, S. Schneider, and H. Treharne. 2017. Privacy-
enhanced capabilities for VANETs using direct anonymous attestation. In 2017
IEEE Vehicular Networking Conference (VNC). 123–130.

[25] JordenWhitefield, Liqun Chen, Frank Kargl, Andrew Paverd, Steve Schneider, He-
len Treharne, and Stephan Wesemeyer. 2017. Formal Analysis of V2X Revocation
Protocols. In International Workshop on S&T.

[26] J. Whitefield, L. Chen, F. Kargl, A. Paverd, S. Schneider, H. Treharne, and S.
Wesemeyer. 2017. Formal Analysis of V2X Revocation Protocols. In Security and
Trust Management - 13th International Workshop, STM (Oslo, Norway), Vol. 10547.

[27] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn. [n.d.]. A security credential
management system for V2V communications. In (VNC’13.

[28] Zhang Xiong, Hao Sheng, WenGe Rong, and Dave E. Cooper. 2012. Intelligent
transportation systems for smart cities: a progress review. Science China Infor-
mation Sciences (2012).

Table 6: Experiment with two Nuvoton TPMs

Command NPCT650 NPCT750

TPM2_CreatePrimary 65.68 ms 45.50 ms
TPM2_StartAuthSession 5.04 ms 10.70 ms
TPM2_PolicySecret 4.29 ms 11.60 ms
TPM2_Sign 204.38 ms 27.30 ms
TPM2_VerifySignature 263.68 ms 53.90 ms
TPM2_FlushContext (Session) 3.16 ms 9.80 ms
TPM2_FlushContext (Key) 2.71 ms 11.10 ms

A APPENDIX

A.1 Experimentation Summary

In general, we see fast execution, and most of the work is done by
the underlying trusted component. This implies that these timings
are close to the most optimal, as optimizing the code will only have
a non-essential impact. Furthermore, it is evident that re-creating
the AK is a relatively heavy operation and should be kept in TPM
volatile memory for as long as needed. Regarding a large number of
pseudonyms, more PolicyOR’s are needed during revocation. This
timing represents the first 6 pseudonyms, though just by adding
two levels more (20ms), we can support 6 · 82 = 384 pseudonyms.

Interestingly, we noticed relatively large timings when it came
to creating primary keys and verifying signatures. Therefore, an
experiment was concluded in a different environment with two
different TPMs. The following timings are acquired from a Dell
desktop, x86, Ubuntu16.04 Xenial.

The results in Table 6 is an obvious example that both the en-
vironment and TPM will have an impact on the timings. In the
latter example, we saw faster timings on creating keys but slower
timings on signing and verifying signatures using an older Nuvoton
TPM. The more modern Nuvoton TPM reduced the key operation’s
timings by a great deal, though more time is taken on non-key op-
erations. This can be suspected due to Nuvoton potentially adding
hardware support for ECC operations in their newer silicon. It is a
prime example of timings being dependent on the physical imple-
mentation. These timings are extracted from the application layer,
environmental factors such as operating system, workloads, and
communication busses (𝐼2𝐶 , SPI, LPC) can impact timings. Despite
the additional uncertainty revolving around timings in desktop
environments, the revocation timings retain a small operation time.
With only minimal added time when including an immense num-
ber of pseudonyms, it significantly improves traditional public key
infrastructures, see section 8. Creating new pseudonyms dynami-
cally is an operation that one must assume to happen often. This
will include the three preparation phases: initializing a new ACI,
initializing and activating a new revocation index. The new ACI is
estimated to have only a slight increase in time, why the preparation
to create new pseudonyms only takes in the order of around two
seconds. As the host can execute these operations at any time, the
host should do it before running out of pseudonyms, for example,
when half of the existing pseudonyms have been used.

https://5gaa.org/wp-content/uploads/2020/11/5GAA_White-Paper_Privacy_by_Design_V2X.pdf
https://5gaa.org/wp-content/uploads/2020/11/5GAA_White-Paper_Privacy_by_Design_V2X.pdf
https://doi.org/10.1109/EuroSP48549.2020.00036
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670- tpm2.0-linux//
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670- tpm2.0-linux//
https: //sourceforge.net/projects/ibmtpm20tss/
https: //sourceforge.net/projects/ibmtpm20tss/
trustedcomputinggroup.org/resource/tpm-library-specification/
trustedcomputinggroup.org/resource/tpm-library-specification/
http://www.trustedcomputinggroup.org

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Benjamin Larsen et. al.

Figure 7: Initializing Revocation Index

Initialize revocation index: Tc ⇌ Host
𝐴𝐶𝐼, 𝑟𝑖𝑛𝑑𝑒𝑥 , 𝐴TMP, 𝐴𝐾𝑛𝑎𝑚𝑒

𝑃𝑑 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑐𝑟𝑒𝑡 | | 𝐴𝐶𝐼 .name)
𝐴TMP .Policy := 𝑃𝑑

CreatePrimary(𝐴TMP, Owner)

𝐷 := KDF(HierarchySeed(Owner), 𝐴TMP)
𝐾𝐻𝐴𝐾 , 𝐴𝐾 := CreateKey(𝐷)

𝐾𝐻𝐴𝐾 , 𝐴𝐾𝑝𝑢𝑏

𝑃𝑑 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 | | 𝐴𝐾𝑛𝑎𝑚𝑒)

DefineSpace(𝑃𝑑 , 𝑟𝑖𝑛𝑑𝑒𝑥)

CreateSpace(𝑟𝑖𝑛𝑑𝑒𝑥 , 𝑃𝑑)
⇐⇒ SpaceNotDefined(𝑟𝑖𝑛𝑑𝑒𝑥)

A.2 Towards Near Zero-Trust Assumptions

Assuming near-zero trust assumptions for the vehicle requires addi-
tional validation of several processes that are executed in the host
to protect against compromised vehicle hosts (e.g., ECUs) that try
to manipulate the parameters given to the attached trusted com-
ponent. This essentially considers a Dolev-Yao adversarial model,
which allows an adversary to monitor and modify all interactions
between the host and the TC. The critical operation to verify is
the management of the policies generated on the host and that
these have been correctly calculated for protecting the appropriate
indexes and keys linked to active pseudonyms (an adversary can
create a policy for inactive pseudonyms in which case a revocation
message will be received and handled correctly but without any
actual revocation results). The second operation to protect is the
content of the ACI in order to validate the authorization limit. Fi-
nally, pseudonyms should be verified to be governed by the correct
RAs whose revocation hashes have been calculated correctly. These
proofs can be done using the TPMs certification functionality and
validated by a trusted entity, such as the Issuer. However, to acquire
a high level of trust, the trusted party should not immediately re-
lease the correct pseudonym certificates. Instead, it should verify
that the AK has been used to replace an ephemeral key and use its
last authorization to write to the next-round ACI. Once finalized,
the host cannot misuse the final authorization, and the system can
be trusted entirely.

Figure 8: Structure of the policy to be authorized

8

PolicySigned

PolicyCpHash

𝑙1

PolicySigned

PolicyCpHash 𝑙2

𝑏1

𝑏𝑥

P

A.3 Offline operation models

This section provides the break-down of the models and figures for
the initialization and setup phases of our protocol, as described in
Section 3.2. More specifically, Figures 7 and 9 depict the execution
steps for the initialization of both revocation (Section 4.2) and
authorization counter (Section 4.1) indexes that occurs right after

Figure 9: Initialize Primordial Authorization Counter Index

Initialize ephemeral index: Tc ⇌ Host
𝐸𝐾 𝐸TMP, 𝐴𝐶𝐼,𝐴LIMIT

CreatePrimary(𝐸TMP, Null)

𝐷 := KDF(HierarchySeed(Null), 𝐸TMP)
𝐾𝐻𝐸𝑝𝐾 , 𝐸𝑝𝐾 := CreateKey(𝐷)

𝐾𝐻𝐸𝑝𝐾

𝑃𝑑 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐾𝐻𝐸𝑝𝐾 .𝑛𝑎𝑚𝑒)
PIN := Rand()

DefineSpace(𝑃𝑑 , 𝐴𝐶𝐼, PIN)

CreateSpace(𝐴𝐶𝐼, PIN, 𝑃𝑑)
⇐⇒ SpaceNotDefined(𝐴𝐶𝐼)

𝐻1 := hash(𝑇𝐶𝑑𝑎𝑡𝑎)

Sign(𝐻1, 𝐾𝐻𝐸𝑝𝐾)

𝜎𝑤 := Sign(𝐻1, 𝐾𝐻𝐸𝑝𝐾)

𝜎𝑤

PolicySigned(𝐾𝐻𝐸𝑝𝐾 , 𝜎𝑤)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐾𝐻𝐸𝑝𝐾 .name)
⇐⇒ VerifySignature(𝐾𝐻𝐸𝑝𝐾 , 𝜎𝑤)

Write(𝐴𝐶𝐼, PIN, 𝐴LIMIT)

𝑃𝑑 := GetPolicy(𝐴𝐶𝐼)
𝑃𝑎 := GetAuth(𝐴𝐶𝐼)
Write(𝐴𝐶𝐼,𝐴LIMIT)
⇐⇒ 𝑆 = 𝑃𝑑 ∧ 𝑃𝑎 = PIN

AuthCounter(𝐴𝐶𝐼) := AuthCounter(𝐴𝐶𝐼) + 1

Restart

FlushKeys(Null)
UpdateNullHierarchySeed

the pseudonym creation. Figure 8 visualizes the check of the policies
that need to occur before the policy digest, to be authorized by the
AK, is calculated (Section 4.3).

Algorithm 1 Calculate Final Policy Digest

(1) InitializeP as an array of hashes (capable of holding𝑛 hashes
where 𝑛 is the number of pseudonyms) and anonymizer
as clear byte. Calculate activation branch digest 𝑏0 :=
𝐻 (𝐻 (𝑏0 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐴𝐾𝑛𝑎𝑚𝑒)) and add to 𝛽

(2) For 𝑘 ∈ K :
(a) Initialize 𝑙1, 𝑙2 as a two digest buffers. Initialize 𝑆𝑑𝑎𝑡𝑎 and

𝐻𝑑𝑎𝑡𝑎 as 8 byte buffers and set all bytes to zero.
(b) Set bit identified by 𝑘.𝑠𝑏𝑖𝑡 high in byte number 8 in 𝑆𝑑𝑎𝑡𝑎
(c) Increment anonymizer and set 𝐻𝑑𝑎𝑡𝑎 to be the binary

representation if it. Set bit identified by 𝑘.ℎ𝑏𝑖𝑡 high in byte
number 8 in 𝐻𝑑𝑎𝑡𝑎

(d) Compute soft- and hard revocation hashes
𝐻𝑠 := 𝐻 (𝐶𝐶𝑁𝑉 _𝑆𝑒𝑡𝐵𝑖𝑡𝑠 | | 𝑥, | | 𝑘.𝑠𝑟𝑖 .𝑛𝑎𝑚𝑒 | | 𝑠𝑑𝑎𝑡𝑎)
𝐻ℎ := 𝐻 (𝐶𝐶𝑁𝑉 _𝑆𝑒𝑡𝐵𝑖𝑡𝑠 | | 𝑘.ℎ𝑟𝑖 .𝑛𝑎𝑚𝑒, | | 𝑘.ℎ𝑟𝑖 .𝑛𝑎𝑚𝑒 | | ℎ𝑑𝑎𝑡𝑎)

(e) Compute soft revocation leaf digest as
𝑙1 := 𝐻 (𝐻 (𝑙1 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝑘.𝑅𝐴.𝑛𝑎𝑚𝑒))
𝑙1 := 𝐻 (𝑙1 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑝𝐻𝑎𝑠ℎ | | 𝐻𝑠)

(f) Compute hard revocation leaf digest as
𝑙2 := 𝐻 (𝐻 (𝑙2 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝑘.𝑅𝐴.𝑛𝑎𝑚𝑒))
𝑙2 := 𝐻 (𝑙2 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑝𝐻𝑎𝑠ℎ | | 𝐻ℎ)

(g) Add branch digest 𝑏 := 𝐻 (𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑅 | | 𝑙1 | | 𝑙2) to 𝛽
(3) Compute finalPolicy := 𝐻 (𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑟 | | 𝛽1 | | 𝛽2 ... | | 𝛽𝑛)
(4) Output finalPolicy

	Abstract
	1 Introduction
	2 Motivation and Contribution
	2.1 Related Work
	2.2 Overview of Revocation using DAA

	3 Conceptual Protocol Overview
	3.1 Soft- and Hard-Revocation
	3.2 Building the Protocol

	4 Architectural Details & Protocols
	4.1 Authorization Counter Index
	4.2 Revocation Index
	4.3 Generate Final Policy Digest
	4.4 Activate Revocation Index
	4.5 Initialize New Authorization Counter Index
	4.6 Revocation

	5 Security Model
	5.1 Threat and Adversarial Model
	5.2 Security Analysis

	6 Performance Evaluation
	6.1 Implementation Results

	7 Conclusions
	8 Acknowledgment
	References
	A Appendix
	A.1 Experimentation Summary
	A.2 Towards Near Zero-Trust Assumptions
	A.3 Offline operation models

