
WWW.PROJECT-ASSURED.EU

Grant Agreement No.: 952697
Call: H2020-SU-ICT-2018-2020
Topic: SU-ICT-02-2020
Type of action: RIA

D4.3: ASSURED BLOCKCHAIN-BASED CONTROL
SERVICES AND CRYPTO FUNCTIONS FOR

DECENTRALIZED DTA STORAGE, SHARING AND
ACCESS CONTROL

Revision: v.1.0

Work package WP 4

Task Task 4.2 – 4.3

Due date 28/02/2022

Deliverable lead TUDE

Version 1.0

Authors Kaitai Liang (TUDE), Shihui Fu (TUDE)

Reviewers Sotiris Kousouris (S5)

Liqun Chen (SURREY)

Abstract In D4.3, we design and develop secure data search and sharing mechanism via the
use of advanced lightweight cryptographic primitives for enabling decentralized data
integrity, access control and multi-level data sharing between different stakeholders
in the context of dynamic supply chains. This will allow users to directly search over
encrypted data stored on public ledger by using a Dynamic SSE scheme, while the
data search and sharing over the private ledger can be also controlled and monitored.

Keywords Search, Data Sharing and Data Access

http://www.project-assured.eu/

D3.2: ASSURED Layered Attestation and Runtime Verification Enablers Design & Implementation

© 2020-2023 ASSURED Consortium

Document Revision History

Version Date Description of change List of contributors
v0.1 15.12.2021 ToC Shihui Fu (TUDE)
v0.2 07.01.2022 State-of-the-art analysis of Searchable

Encryption Schemes and their possible
usage/integration in the context of ASSURED
(Chapter 3)

Kaitai Liang, Shihui Fu (TUDE)
Nada El Kassem (SURREY)
Stefanos Venios (S5)

v0.3 14.01.2022 Mapping of the ASSURED secure data sharing
and management requirements with possible
SE techniques so as to identify the best
possible approach to follow (Chapter 2)

Kaitai Liang, Shihui Fu (TUDE)
Stefanos Venios (S5)
Thanassis Giannetsos (UBITECH)

v0.4 21.01.2022 Description of the first draft of the Dynamic
Searchable Encryption scheme to be employed
in ASSURED (Chapter 4)

Kaitai Liang, Shihui Fu (TUDE)
Nada El Kassem (SURREY)

v0.5 04.02.2022 Design of the ASSURED Data Storage Engine
so as to be able to handle the confidentiality and
integrity requirements, due to the sensitivity of
the attestation-related data stored, as well as
the storage requirements of the designed SE
scheme (Chapter 5)

Sotiris Kousouris, Stefanos Venios (S5)
Thanassis Giannetsos (UBITECH)

v0.6 11.02.2022 Update and finalization of the ASSURED SE
scheme (Chapter 4)

Kaitai Liang, Shihui Fu (TUDE)

v0.7 18.02.2022 Description of the necessary cryptographic
primitives needed as building blocks for
ASSURED SE and secure data storage
(Chapters 2 and 3)

Kaitai Liang, Shihui Fu (TUDE)
Nada El Kassem (SURREY)
Stefanos Venios (S5)

v0.9 24.02.2022 Review the document Sotiris Kousouris (S5)
Liqun Chen (SURREY)

v1.0 27.02.2022 Finalisation of the document Thanassis Giannetsos, Dimitris Karras
(UBITECH)

Editors

Kaitai Liang (TUDE), Shihui Fu (TUDE)

Contributors (ordered according to beneficiary numbers)

Liqun Chen, Nada El Kassem (SURREY)

Kaitai Liang, Shihui Fu (TUDE)

Thanassis Giannetsos, Dimitris Papamartzivanos, George Misiakoulis (UBITECH)

Sotiris Koussouris, Stefanos Venios, Alexandros Tsaloukidis, Konstantinos Charalambous (SUITE5)

D3.2: ASSURED Layered Attestation and Runtime Verification Enablers Design & Implementation

© 2020-2023 ASSURED Consortium

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the "Future
Proofing of ICT Trust Chains: Sustainable Operational Assurance and Verification Remote Guards
for Systems-of-Systems Security and Privacy" (ASSURED) project’s consortium under EC grant
agreement 952697 and do not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the information contained
herein.

COPYRIGHT NOTICE

© 2020 - 2023 ASSURED Consortium

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web 

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to ASSURED project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Executive Summary

The main focus of this deliverable is on the decentralized data management and sharing over
the ASSURED blockchain framework. Several main components and roles are considered in this
deliverable, including the ASSURED Security Context Broker, data management over public and
private data, and the data storage on the ASSURED data storage engine. Recall that from the
deliverable D4.1 [12], data storage, management and sharing framework and the corresponding
generic interactions were defined and introduced. The SCB acts as the adjunct point between
external parties, blockchain ledgers (on-chain) and (off-chain) storage engine. Their connections
and interactions are further elaborated in this deliverable.

We first review the secure data management in the ASSURED blockchain framework, includ-
ing the roles, and types of data and actors, and the corresponding core security requirements.
We further introduce the cryptographic technologies which are used in the design of secure data
sharing in this deliverable. Specifically, we go through symmetric encryption, pseudorandom func-
tions, Attribute-based Encryption (ABE), and Searchable Encryption (SE) components. In these
components, we explain how they work and how they can merge with the ASSURED blockchain
framework. We note that in the design of SE system we will leverage these components. We also
explain the reasons of using these components.

After that, we proceed to the main contribution of this deliverable – the first stage design of
the Dynamic Searchable Symmetric Encryption (DSSE) for the secure data search and sharing
over ASSURED blockchain ledger. We introduce the DSSE system model and basic security
guarantees during the data search and sharing. An overview of the design and the detailed
descriptions are given. In those DSSE supported secure data operations, we first enable the SCB
to receive attestation data bundle from the ASSURED blockchain peer(s). The SCB is allowed
to use those attestation data (including encrypted raw data, attestation results, metadata, and
related ID info) to interact with data storage engine in the sense that the encrypted raw data is
stored on the engine and meanwhile, a linkable pointer is returned to the SCB. We note that
the raw data is encrypted under the ABE format so as to provide the data confidentiality. The
SCB can further calculate a hash value over the encrypted data, the pointer, and attestation ID.
This hash value can be used to guarantee the integrity of the storage copy but also link the ID,
pointer and attestation raw data together. Recall that the ASSURED blockchain framework can
support two types of ledgers: public and private ledgers. For each of these types, we will design
different approach of data storage and access. The DSSE scheme is mainly applied on the public
ledger; while the data access control over the private ledger is based on ABAC. The cryptographic
primitive, DSSE, can be securely used by the external stakeholders to perform search queries.

At last, the ASSURED data storage engine is defined. Some securing approaches on the data
storage engine and storage options are further introduced.

The overall purpose of this deliverable is to provide a first stage development document on the use
of SE, ABAC and data storage engine, and how these components interact together to provide
security and privacy preservation on data search and data sharing. This will be used as input
to the final stage design and implementation of the ASSURED decentralized data storage and
management.

ASSURED D4.3 PU Page I

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Contents

List of Figures IV

List of Tables V

1 Introduction 1
1.1 Scope and Purpose . 1
1.2 Relation to other WPs and Deliverables . 1
1.3 Deliverable Structure . 2

2 Secure Data Management in ASSURED 3
2.1 Roles of Secure Data Management in ASSURED 4
2.2 Types of Data and Actors . 6
2.3 Security Requirement of Secure Data Management 7

3 Cryptographic Technologies 10
3.1 Symmetric Encryption . 10
3.2 (Pseudo-) Random Functions . 12
3.3 Attribute-Based Encryption . 12

3.3.1 ABE in ASSURED Framework . 13
3.3.2 ABE in Searchable Encryption . 14

3.4 Searchable Encryption . 15
3.4.1 Need for Searchable Encryption . 15
3.4.2 Security Guarantees . 16
3.4.3 General Model . 17
3.4.4 Searchable Symmetric Encryption . 19
3.4.5 Dynamic Searchable Symmetric Encryption 20

4 ASSURED Initial Designed Dynamic Searchable Symmetric Encryption Scheme 22
4.1 Notations . 22
4.2 System Model . 22
4.3 Dynamic Searchable Symmetric Encryption Scheme 24

4.3.1 A High Level Description . 24
4.3.2 A Detailed Description . 25

4.4 Flexible Attribute-Based Encryption Interface . 29
4.5 DSSE Secure Data Operation . 29

4.5.1 Updates on the Public Ledger . 31
4.5.2 Building the Index Structure . 32
4.5.3 Keyword (Fuzzy) Search . 33
4.5.4 File Addition . 34

ASSURED D4.3 PU Page II

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

4.5.5 File Deletion . 35
4.6 Private Ledger Data Access . 36
4.7 Access via the ABAC . 37

5 ASSURED Data Storage Engine 39
5.1 Data Storage Engine and relevance to ASSURED Operations 39
5.2 Securing the Data Storage Engine . 40
5.3 Storage Engine Deployment Options . 41

6 Conclusion 43

ASSURED D4.3 PU Page III

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

List of Figures

1.1 Relation of D4.3 to other WPs and Deliverables 2

2.1 ASSURED DLT Architecture . 5

3.1 General Model of an Index-Based Searchable Encryption Scheme 18

4.1 General Workflow of DSSE Secure Data Storage and Search on Public Ledger . . 31
4.2 General Workflow of Secure Data Storage and Search over the Private Ledger . . 36

ASSURED D4.3 PU Page IV

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

List of Tables

1 Security Requirements of Secure Data Management 7

ASSURED D4.3 PU Page V

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Chapter 1

Introduction

1.1 Scope and Purpose

This deliverable D4.3 “ASSURED Blockchain-based Control Services and Crypto Functions for
Decentralized Data Storage, Sharing and Access Control” comes as the third deliverable of WP4
of the ASSURED project which aims to design and implement the blockchain-based cryptographic
tools, APIs and functionalities to provide fully transparent and accountable secure information ex-
change. The deliverable corresponds to the Task 4.3 “Decentralized Data Storage, Sharing and
Access Control Services”. The task is to define, design and implement the advanced lightweight
crypto primitives to enable decentralized data integrity, access control and multi-level data sharing
among stakeholders in the context of dynamic supply chains. From this perspective, we should
mainly focus on the development of searchable encryption component. That is what this deliver-
able crucially reflects on. Recall that in the first deliverable of WP4, i.e. D4.1 [12], multiple data
sharing and management components were defined, e.g., ASSURED blockchain infrastructure,
the security context broker (SCB), attribute-based access control (ABAC), searchable encryption
(SE), cloud-based backend, etc. And that deliverable described how these components should
interact with each other in a general and generic approach. Starting from that, this deliverable first
reviews those roles, actors, functionalities, types of data and the crucial security requirements in
secure data management, which were proposed in D4.1 [12] and D1.4 [13]. From the reviewing,
one may easily capture the understandings on the previous backgrounds. After that, the deliv-
erable proceeds to the introduction of necessary cryptographic components, e.g., ABE and SE.
Specifically, it introduces the basic definition, syntax, general model, security guarantees and
the current state of the art in this research line. With the corresponding background knowledge,
the deliverable presents the initial design of dynamic searchable symmetric encryption (DSSE)
construction. A high-level and a detailed descriptions are given in the deliverable. We note that
the use of DSSE is mainly targeting to the secure data search over ASSURED public ledger;
as for the search on private ledger, we also provide an initial solution. At last, we provide the
descriptions of the ASSURED data storage engine.

1.2 Relation to other WPs and Deliverables

D4.3 comes as the third deliverable of WP4 “Blockchain-based ASSURED Supply Chain Control
Services and Trust Evidence Collection” and is acting as an important interaction adjunct for other
deliverables in this work package. As illustrated in Figure 1.1, this deliverable first takes the input
from the D4.1 [12]. D4.1 has defined ASSURED data management and sharing infrastructure, be-

ASSURED D4.3 PU Page 1 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Figure 1.1: Relation of D4.3 to other WPs and Deliverables

haviours, and security requirements. Based on the guidelines output by the D4.1, this deliverable
moves one step forward into the secure data sharing via the use of Searchable Encryption (SE)
with the ASSURED blockchain framework and the descriptions of the data storage engine. D4.3
has strong connections with D4.2 [17] and D4.5 [18]. D4.2 introduces the main crypto primitives
for data sharing: attribute-based encryption (ABE) and secure data management implementation
diagrams. D4.5 explains how the interconnection is done within the blockchain framework using
TPM wallet, and how the TPM wallet manages keys used by crypto primitives and blockchain
users. D4.4 will be a further completed version of D4.3, in which we will consider more how all
the TPM wallet, ABE, SE and ABAC interact as a whole service for different use cases. Further,
D4.3 captures the data sharing behaviors and operations defined in the Task 1.5, and provides
crypto primitives that will be implemented in the Task 5.2.

1.3 Deliverable Structure

The remaining of this deliverable is structured as follows. In Chapter 2, we review a high-level
DLT data management components within the ASSURED framework, and the main requirements
of DLT data storage, sharing and access control components. We explain the roles within the
framework, trusted blockchain control services, trusted blockchain wallet, and how these ele-
ments interact with each other over different types of data. And further, we review all the security
requirements of secure data management. In Chapter 3 we present a thorough introduction on
the cryptographic components used in our searchable encryption design. The state-of-the-art
searchable encryption systems are introduced in this chapter. Later, in Chapter 4, we propose
the DSSE scheme for the ASSURED secure data sharing. In this chapter, we introduce the core
techniques and how the scheme works with different parties and components in the ASSURED
blockchain framework. In Chapter 5 we define the ASSURED data storage engine and how it
provides the data storage and deployment options. Finally, Chapter 6 concludes the deliverable.

ASSURED D4.3 PU Page 2 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Chapter 2

Secure Data Management in ASSURED

With the rapid development of cloud computing, cloud storage has enabled the provision of high
data availability, easy access to data, and reduced infrastructure costs from outsourcing of data
to services to relieve the burden of maintenance costs as well as the overhead of storing data
locally. Moreover, users are able to access their data anywhere and at any time instead of having
to use dedicated machines. In recent years, small and large business enterprises are moving
their infrastructure to the cloud, because of two main reasons: massive storage capacity and
accessibility. At the same time, the introduction of IoT and other similar infrastructures within or-
ganizations has led to the exponential generation of data, which fuels the movement of digitization
of operations, which is based on exploiting all data that can be accessed to extract intelligence
that can be used to improve operations. And it becomes evident that enterprise systems should
capitalize not only on the internally produced data, but also on data they can access and acquire
from external sources.

Cloud storage and IoT offer many advantages to users, however, there are still various secu-
rity and privacy concerns. A remote server cannot be fully trusted because it may not only be
curious about the users data but also abuse the data. Although users are able to access their
data anywhere and at any time, when users outsource their data to a remote server, the physical
access to the data is actually lost and the administration of the data is delegated to the server as
well. Thus, it is necessary to guarantee the privacy of users sensitive data. The most common
way of achieving privacy is to encrypt the data before outsourcing them. This approach provides
end-to-end data privacy as soon as the data leave the users possession. While such a solu-
tion guarantees the privacy of sensitive data, it also brings difficulties for the server to perform
any meaningful function, such as secure sharing, access control, search and some other data
management functionalities, on the encrypted data.

For example, we consider a search function on encrypted data. A user sends query keywords to
the server in order to retrieve corresponding documents. After searching, the server will return
the search results to the user. However, during the search process, both the knowledge of the
contents stored on the server and the query keywords are exposed to the semi-trusted server.
Fortunately, encryption is a positive way to protect the privacy of users data, but at the same time
it disrupts search functionality. A trivial way to search is to download all the ciphertexts, decrypt
them, and then search on the plaintexts. However, this is impractical. Therefore, when we design
the data sharing and management components of ASSURED, we needed a way to provide data
confidentiality and preserve search functionality simultaneously.

Most of current secure and trusted systems focus on centralized approaches to provide secure
data management. These systems strongly relies on a or some trusted parties to handle data
sharing and meanwhile, they are easily vulnerable to many types of attacks [35]. This motivates

ASSURED D4.3 PU Page 3 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

us to use a series of new technologies to achieve the goal of secure data management in AS-
SURED.

In ASSURED, we provide a secure, trusted, auditable and privacy-preserving platform for opera-
tional and security-related data management including their secure storage, access control and
searching. To this end, we design smart contract based access control to verify data requester’s
attributes and related policies, use attribute-based access control (ABAC) to maintain ledger data
access, attribute-based encryption (ABE) to guarantee final data copies’ data confidentiality on
the data storage engine, and dynamic searchable symmetric encryption (DSSE) as a privacy-
preserving data searching service.

In this chapter, we are going to review the roles, DLT data management and security requirements
for the ASSURED framework which have been defined in the Deliverable 4.1 [13], setting the tone
for the consequent chapters that elaborate the design of our secure data sharing and storage
components.

2.1 Roles of Secure Data Management in ASSURED

ASSURED aims to protect data generated within consortium and on supply chain against leakage
or tamper, whilst at the same time provide data availability to the internal and external parties from
the data value chains. Internal and external storage via ledger infrastructures and cloud-based
backend (called ASSURED Data Storage Engine in the ASSURED framework, we will cover the
data storage engine in more details in Chapter 5) can be used to maintain data confidentiality
and sharing, track and audit data correctness and processing with specified security and privacy
policies. In this way data and their sources are maintained to be inline with the specified privacy,
applications and services.

As has been mentioned in the Deliverables 1.1 [15] and 1.2 [14], using the Blockchain Distributed
Ledgers to guarantee data sharing and security policy enforcement, is considered one of the
main contributions delivered by the ASSURED project. ASSURED attempts to enhance data
privacy, storage, sharing and access control mechanisms via the combination of cryptogrpahic
primitives and blockchain techniques. The DLT platform and off-chain data storage engine mainly
offer secure data storage and management services. In terms of secure data sharing, we will
mainly make use of trusted computing components, i.e. TPM, ABAC, ABE and searchable en-
cryption technologies to ensure that all the data related operations are auditable and compliant
with security and privacy policies.

As has been described in Deliverables 4.1 [12]. ASSURED will leverage private and public
ledgers to handle on-chain data management. The former, controlling internal data sharing, will
storage smart contracts between the ASSURED Platform and the internal components, based
on the details of the data sharing, and further, some related data including attestation results,
attestation ID, will be put on the private ledger. The latter, i.e. the public ledger, is mainly used for
handling data sharing to external parties. It is used to record some encrypted form of metadata
and pointers which can help external parties to have fuzzy search over the attestation raw data.
In addition to the on-chain data management, ASSURED will also make use of the off-chain data
storage via the use of cloud-based data storage engine. That data storage engine will be used to
store the encrypted attestation raw data under the ABE. Figure 2.1 shows the general framework
of on-chain and off-chain data sharing.

Below, we are going to review the main components or services related to data management
as shown in Figure 2.1. We first use the hardware trust anchors (TPM) in supporting secure

ASSURED D4.3 PU Page 4 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Figure 2.1: ASSURED DLT Architecture (from D4.1 [12])

information storage and authentication.

TPM Embeded in a Device: TPMs are used as a useful building block for ASSURED data
sharing mechanisms and they enhance the trust on the data management operations but also
strengthen the secure use of cryptographic primitives. The novel integration of the TPM technol-
ogy with ASSURED blockchain and crypto functions can provide the state-of-the-art of blockchain-
based data sharing services:

• Connecting Cryptographic Primitives: as for the on-chain and off-chain data sharing, we
mainly leverage symmetric encryption, ABE and searchable encryption. These components
will be further introduced in Chapter 3.

• Secure Information Storage: a user can store private/secret keys into a TPM, and, when
authorized by the user, the TPM allows access to the user’s secrets.

Trusted TPM-based Blockchain Wallet: In the ASSURED framework, TPMs are also the basis
for trusted blockchain wallets:

• Authentication: it can provide strong user authentication and to securely store blockchain
users’ (e.g., devices, external parties) credentials based on the TPM’s secure key storage.

• Access and Key Control: it can control and authorize access to private or public ledger
channels based on the authentication process. Specifically, ASSURED leverages the TPM-
based wallet for each entity to facilitate a decentralized ABE and searchable encryption
mechanisms where the necessary keys are managed locally.

Secure Data Search: This service mainly includes the interactions with the security context bro-
ker (SCB), the ASSURED public ledger, ASSURED data storage engine and the searchable en-
cryption component. As information stored in the public Ledger will be encrypted, it is essential

ASSURED D4.3 PU Page 5 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

to provide a service that allows interested stakeholders to be able to locate whether informa-
tion of their interest exists within an organization and then connect them to the right retrieval
points which are given by the data storage engine and stored in the encrypted form on the public
ledger. In order to facilitate this need, within each public ledger constructed within the ASSURED
blockchain network, we will deploy a dynamic searchable symmetric encryption component that
will allow interested stakeholders to perform queries on top of encrypted metadata that are stored
in the public ledger and accompany the different attestation information generated by the devices.
These metadata will be provided by the SCB in an encrypted manner, and this component will
allow stakeholders to request a special search token corresponding to a or some keywords to
perform queries over the encrypted metadata. In case the token of the querying is valid, and the
requested information exists on the ledger, this will be revealed to the query party, reverting them
to the storage engine where they should query to get the full attestation report.

2.2 Types of Data and Actors

Types of Data. We briefly review the types of the data which are mainly involved into the secure
data sharing and storage stages in ASSURED. As described in D1.4 [13, Table 1], we focus on
the following data in this deliverable:

• Attestation Raw Data: This is the data collected from the deployed devices and assets
(sources) and can include the information related to attestation.

• Attestation Result Data: This is the result data of analyzing from attestation, and this will
only be used to indicate a result of the attestation, e.g., a failed attestation.

• Identity Data: This is a type of data we use to set identify attestation, which we can also call
it attestation ID (identifier).

Data Categories. In ASSURED we have two main data categories: one is stored on ledger
which we call on-chain data, and the other is the off-chain data which is mainly stored on
the ASSURED data storage engine. As for the on-chain data, we further separate two different
cases: the data on the private ledger, and those on the public ledger. The data stored on the
private ledger are accessible for the private channel users. For convenience, we store the attes-
tation results, unencrypted pointers, and other related information, e.g., attestation ID and hash
values, on the private ledger, where the pointers are those references used to retrieve encrypted
attestation raw data from the data storage engine. We also store data on the public ledger, so
that external parties can perform some level (fuzzy) of secure search. Those data include en-
crypted index structure, encrypted pointers and related information, e.g., hash values. We note
that the detailed use of the data will be seen in Chapter 4 while introducing the DSSE scheme.
As for the off-chain data, they are mainly stored on the data storage engine, in ABE encrypted
format. These data are usually referred to as the (encrypted) attestation raw data. We further will
elaborate how the on-chain and off-chain data interact between ledgers and data storage engine.

Data Format. Recall that in D1.4 [13] we define three major groups of data format:

• Unstructured Data: This refers to any dataset without a reliable structure from which we
can extract other data of our interest.

• Structured Data: This is the data that has fixed and well-known format and structure that
allows relationships to be established.

ASSURED D4.3 PU Page 6 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

• Semi-structured Data: This is the data that has a fixed format but with a non-strict organi-
zation, such as XML and JSON.

In this deliverable, we mainly focus on the last two types of data format. As for the structured data,
we refer to those encrypted data under well-formed and well-studied cryptographic mechanisms,
e.g., ABE, searchable encryption, hash function. Besides, we will need a keyword dictionary
giving to external parties so that they are able to know which keywords they may use for search
queries. This dictionary is regarded as structured data. We will also use the semi-structured data
which includes attestation raw data.

Data Actors. We will use some significant actors related to the data sharing in ASSURED.

• Data Subject: This role reflects the identified asset who is providing operational and security
raw data for further processing and is the actual data sources. Here we mainly consider
devices as this actor.

• Data Controller: The person or (software) asset which alone or jointly with other can deter-
mine the purpose and means of the processing of the collected operational raw data. We
here consider the ASSURED blockchain administrator, Security Context Broker (SCB), and
data storage engine, in which SCB mainly participates into data sharing and searching.

• Data Processor: A natural person, public authority, agency or other body party that pro-
cesses operational and/or security related data. For this role, we consider the SCB, AS-
SURED blockchain peers/orderers, and the data storage engine administrator.

• Data Recipient: A natural person, public authority, agency or another body (internal or ex-
ternal to current network), to which the operational and security related data are disclosed,
whether a third party or not. In this case, this role can be naturally taken by devices, external
parties, the SCB and data storage engine.

• Third Party: A natural person, public authority, agency or body (external to the supply
chain) other than the data subject, controller, processor and persons who are authorized
to process personal data. For example, the interested stakeholders who want to search
interested data and further issue related data queries.

2.3 Security Requirement of Secure Data Management

We review the security requirements for the ASSURED secure and accountable data manage-
ment, in Table 2.1, through the use of DLT technologies, Attribute-Based Encryption/Access Con-
trol and Searchable Encryption components. As aforementioned in D1.4 [13] and D4.1 [12], we
should guarantee the data confidentiality, integrity, searchability and multi-level access control.
We note that here we mainly focus on those requirements that are related to data storage and
sharing.

Table 2.1: Security Requirements of Secure Data Management

Components Descriptions

DLT
Infrastructure

DLT-SCT-03 – The DLT infrastructure shall provide the necessary availability
guarantees for the data by utilising an off-chain data storage facility

ASSURED D4.3 PU Page 7 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Table 2.1: Security Requirements of Secure Data Management (Continued)

DLT
Infrastructure

DLT-SCT-05 – The original and full copy of a given encrypted data shall be
stored on the off-chain storage to allow the ledgers to be performant and
meet availability SLAs

DLT-SCT-07 – The encrypted data stored on the ledgers shall be a pointer to
the actual data in the off-chain data storage engine

DLT-SCT-30 – The data to be stored stored on the ASSURED DLT
Infrastructure shall be protected by strong cryptographic primitives coming
out of the TPM of the devices that also perform the attestation

DLT-SCT-50 – The attestation data stored on the ledger shall not be able to
be removed or amended once the initial transaction has been executed

DLT-SCT-52 – The data sharing event and status shall be recorded on the
ledger for later auditing purposes

DLT-SCT-54 – The attestation data stored on the ledger shall not be altered
by any action/user

DLT-SCT-55 – The data stored on the ledger shall be validated by a set of
peers during the transaction

DTL-DEC-06 – Data stored on the ledgers shall enable confidentiality by
being encrypted

Security
Context Broker

DLT-SCT-08 – The off-chain data storage shall be accessible only via the
SCB which acts as a proxy between the off-chain data storage engine and
the requester

DLT-SCT-13 -– The SCB shall securely obtain the storage pointer of an
attestation report and pass it to the private network.

DLT-SCT-14 – The SCB shall securely obtain the storage pointer of an
attestation report and pass it to the private network/Searchable Encryption
component

DLT-SCT-17 – The SCB shall produce the metadata for the attestation
assets to be encrypted by the Searchable Encryption Component

Attribute-
Based Access
Control

DLT-SCT-21 – The ABAC layer shall be executed as part of the functionality
to be offered by the SCB

DLT-SCT-22 – Data stored in the ASSURED DLT Infrastructure can only be
read by entities that possess the appropriate attributes

DLT-SCT-24 – The ABAC shall verify via the credentials of an entity that
have been obtained by the Blockchain CA and the policies defined by policy
engine

DLT-SCT-25 – The ABAC shall provide the different permissions to the
parties that want to access the DLT infrastructure

Attribute-
Based
Encryption

DLT-SHA-14 – The data coming out of the devices shall be encrypted using
ABE

ASSURED D4.3 PU Page 8 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Table 2.1: Security Requirements of Secure Data Management (Continued)

Attribute-
Based
Encryption

DLT-SCT-34 – The encryption methods to be utilized by the TPMs shall
utilize an ABE scheme to allow data to be read (decrypted) by entities that
possess the correct attributes

DLT-SCT-35 – Decryption of data fetched from the DLT Infrastructure shall
happen at the device level of the data requester using its attributes and keys
stored in the TPM

DLT-SCT-40/DLT-SCT-41 – The ABE component shall enable devices to
perform the corresponding encryption/decryption with the help of TPM

DLT-SCT-42 – The encryption performed shall be based on attribute and
policy belonging to the TPM devices

DLT-SCT-43 – The decryption key shall be protected and issued by the TPM
based on attributes provided by the device

DLT-SCT-44 – The TPM shall use the main secret key to generate an
attribute-based key that helps devices to perform valid decryption

Searchable
Encryption

DLT-SCT-36 – The encrypted data to be stored in the ASSURED DLT
Infrastructure shall be made searchable in its encrypted state, using SE
functionality

DLT-SCT-38 – The searchable encryption functionality shall be provided at
the public peer level

DLT-SCT-39 – Queries over the searchable data shall be performed via the
SCB acting as a proxy between the requester and the searchable encryption
component

DLT-SCT-45 – The searchable encryption functionality shall generate a
keyword index structure and further encrypt the structure along with the data

DLT-SCT-46 – The secret key of searchable encryption component shall be
hosted and protected by the SCB’s TPM

DLT-SCT-47 – The searchable encryption component shall return replies to
queries performed by users via the SCB

ASSURED D4.3 PU Page 9 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Chapter 3

Cryptographic Technologies

In this chapter, we elaborate the fundamental cryptographic primitives that are used in searchable
encryption service in ASSURED. These functions will be used to provide secure data access and
could be enhanced through the utilization TPM (see the deliverable D4.5 [18]). Given these
functions, ASSURED will offer a set to cryptographic abstractions, i.e., advanced crypto-based
operations supporting the blockchain-based data searching and sharing.

3.1 Symmetric Encryption

In the context of symmetric encryption, i.e., private-key encryption, two parties share a key and
use that key when they want to communicate secretly. One party can send a message, or plain-
text, to the other by using the shared key to encrypt the message and thus obtain a ciphertext
that is transmitted to the receiver. The receiver uses the same key to decrypt the ciphertext and
recover the original message. The same key is used to convert the plaintext into a ciphertext
and back and both parties hold the same key that is used for encryption and decryption. This is
in contrast to asymmetric, or public-key encryption (introduced in D4.2 [17, Chapter 2]), where
encryption and decryption use different keys. We will discuss this in more detail here as our
searchable encryption scheme relies heavily on symmetric encryption.

Formally, a private-key encryption scheme is defined by specifying a message space M along
with three algorithms: a procedure for generating keys (Gen), a procedure for encrypting (Enc),
and a procedure for decrypting (Dec). The message space M defines the set of “legal” mes-
sages, i.e., those supported by the scheme. The algorithms of the scheme have the following
functionality:

1. The key-generation algorithm Gen is a probabilistic algorithm that outputs a key k chosen
according to some distribution.

2. The encryption algorithm Enc takes as input a key k and a message m and outputs a
ciphertext c. We denote by Enck(m) the encryption of the plaintext m using the key k.

3. The decryption algorithm Dec takes as input a key k and a ciphertext c and outputs a
plaintext m. We denote the decryption of the ciphertext c using the key k by Deck(c).

A symmetric encryption scheme must satisfy the following correctness requirement: for every key
k output by Gen and every message m ∈M, it holds that

Deck(Enck(m)) = m.

ASSURED D4.3 PU Page 10 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

The set of all possible keys output by the key-generation algorithm is called the key space and is
denoted by K. Almost always, Gen simply chooses a key uniformly from the key space.

An encryption scheme should be designed to be secure even if an eavesdropper knows all the
details of the scheme, so long as the attacker doesn’t know the key being used. Stated differently,
security should not rely on the encryption scheme being secret; instead, Kerckhoffs’ principle
demands that security rely solely on secrecy of the key.

CPA-Security. Chosen-plaintext attacks (CPA) capture the ability of an adversary to exercise
(partial) control over what the honest parties encrypt. Imagine a scenario in which two hon-
est parties share a key k, and the attacker can influence those parties to encrypt messages
m1,m2, . . . and send the resulting ciphertexts over a channel that the attacker can observe. At
some later point in time, the attacker observes a ciphertext corresponding to some unknown mes-
sage m encrypted using the same key k; let us even assume that the attacker knows that m is
one of two possibilities m0,m1. Security against chosen-plaintext attacks means that even in this
case the attacker cannot tell which of those two messages was encrypted with probability signif-
icantly better than random guessing. In practical applications, if AES is a secure pseudorandom
permutation (we cannot prove it at the current stage, the existence of pseudorandom permuta-
tions depends on the existence of one-way functions), then AES in Cipher Block Chaining (CBC)
mode and in Counter (CTR) mode are CPA-secure.

Even though chosen-plaintext attacks allow an adversary to control what gets encrypted, the
adversary in that setting is still limited to passively observing ciphertexts transmitted by the honest
parties. We have a stronger security definition which makes any modification of an encryption c
“useless”, called CCA-security.

CCA-Security. In a chosen-ciphertext attack (CCA) game, we provide the adversary not only
with the ability to encrypt messages of its choice (as in a chosen-plaintext attack), but also with
the ability to decrypt ciphertexts of its choice (except the challenge ciphertext c that is received
from the challenger). Formally, we give the adversary access to a decryption oracle in addi-
tion to an encryption oracle. CCA-secure encryption scheme can be constructed from a CPA
secure encryption and a secure message authentication code (MAC) by following the encrypt-
then-authenticate paradigm. If AES is a secure pseudorandom permutation, then AES in Ga-
lois/Counter Mode (GCM) is CCA-secure.

Anonymous. A symmetric encryption scheme is anonymous if given two ciphertexts, one cannot
determine whether they were encrypted under the same key.

Jumping ahead, when deploying the searchable encryption service, the SCB will be responsible
for generating the index-based database related to the search function and the encrypted docu-
ments (i.e., the location (pseudo-) pointers, see Chapters 4 and 5), then send them to the public
ledger. The documents can be encrypted using an independent symmetric encryption scheme.
As with the DSSE scheme described in Chapter 4, we actually make use of the symmetric en-
cryption scheme as a black-box and do not rely on its concrete construction. In addition, when
uploading/outsourcing the attestation raw data, the devices can use any symmetric encryption
scheme to encrypt the attestation raw data, and then further use an ABE scheme to encrypt
the private key (of the symmetric encryption scheme). Likewise, we make use of the symmetric
encryption scheme also as a black-box. The only security requirement for the symmetric en-
cryption scheme being used in our searchable symmetric encryption scheme is that it should be
anonymous and CPA-secure (see Section 4.3.2).

However, for efficiency, we recommend using the well-known 256-bit AES in CBC mode as the

ASSURED D4.3 PU Page 11 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

symmetric encryption algorithm/scheme we are going to use in our searchable symmetric en-
cryption scheme because AES-CBC is anonymous and CPA-secure.

3.2 (Pseudo-) Random Functions

We denote by U(D,R) the uniform distribution over all functions RO : D → R where R is
finite (implicitly defined by the probabilistic algorithm that assigns, uniformly and independently at
random, an ℓR(λ)-bit string to each new input). If RO is sampled from U(D,R), then we say that
RO is a random oracle.

A keyed function F : K × D → R is a two-input function, where K and R are finite, and the first
input is called the key and typically denoted by K. K is the key space of F , D is its domain, and
R is the range of F . They respectively have size |K| = 2ℓK(λ), |D| = 2ℓD(λ), and |R| = 2ℓR(λ),
with ℓK, ℓD, ℓR : N→ N. For K ∈ K, we denote FK the function that is the partial evaluation of F
on K, namely

FK : D → R
x 7→ F (K, x).

We say F is efficient if there is a polynomial-time algorithm that computes F (K, x) given K and
x.

Definition 1 (Pseudorandom Function). An efficient, keyed function F : K×D → R is a pseudo-
random function (PRF) if for all probabilistic polynomial-time distinguishersA, there is a negligible
function negl such that:

AdvprfA,F (λ) =
∣∣∣Pr [K←$K : AFK(·)(1λ) = 1

]
− Pr

[
f←$U(D,R) : Af(·)(1λ) = 1

]∣∣∣ ≤ negl(λ),

where the probability is also taken over the randomness of A.

The dynamic SSE described in Chapter 4 will employ two random oracles to mask the (search,
addition and deletion) tokens and the information related to the document identifiers (i.e., the
location (pseudo-) pointers, see Chapters 4 and 5). Concretely, when building the index-based
database related to the search function, the SCB will use the random oracles to generate random
strings related to the keyword w, and then mask the identifiers and the storage location informa-
tion of documents containing the keyword w. When adding/deleting a document, the SCB also
uses the random oracles to generate random strings to mask the corresponding addition/deletion
tokens. So, basically, we use random oracles to mask relevant information to avoid unnecessary
information leakage and achieve a high level of security and privacy.

The random oracles can be implemented using HMAC-SHA256 (the HMAC construction is first
described by Bellare, Canetti and Krawczyk [2]). The first parameter passed to the random oracle
is used as a key to the HMAC, and the second parameter is used as input to the HMAC.

3.3 Attribute-Based Encryption

Attribute-based encryption (ABE) is a relatively recent approach that reconsiders the concept
of public-key cryptography. In traditional public-key cryptography, a message is encrypted for a

ASSURED D4.3 PU Page 12 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

specific receiver using the receiver’s public-key. Identity-based cryptography and in particular
identity-based encryption (IBE) changed the traditional understanding of public-key cryptography
by allowing the public-key to be an arbitrary string, e.g., the email address of the receiver. ABE
goes one step further and defines the identity not atomic but as a set of attributes, e.g., roles,
and messages can be encrypted with respect to subsets of attributes (key-policy ABE) or policies
defined over a set of attributes (ciphertext-policy ABE). The key issue is that someone should
only be able to decrypt a ciphertext if the person holds a key for “matching attributes” where user
keys are always issued by some trusted party.

Ciphertext-Policy ABE. In ciphertext-policy attribute-based encryption (CP-ABE) a user’s private-
key is associated with a set of attributes and a ciphertext specifies an access policy over a defined
universe of attributes within the system. A user will be ale to decrypt a ciphertext, if and only if his
attributes satisfy the policy of the respective ciphertext. Policies may be defined over attributes
using conjunctions, disjunctions and (k, n)-threshold gates, i.e., k out of n attributes have to be
present (there may also be non-monotone access policies with additional negations and mean-
while there are also constructions for policies defined as arbitrary circuits). For instance, let us
assume that the universe of attributes is defined to be {A,B,C,D} and user 1 receives a key
to attributes {A,B} and user 2 to attribute {D}. If a ciphertext is encrypted with respect to the
policy (A ∧ C) ∨D, then user 2 will be able to decrypt, while user 1 will not be able to decrypt.

CP-ABE thus allows to realize implicit authorization, i.e., authorization is included into the en-
crypted data and only people who satisfy the associated policy can decrypt data. Another nice
features is, that users can obtain their private keys after data has been encrypted with respect
to policies. So data can be encrypted without knowledge of the actual set of users that will be
able to decrypt, but only specifying the policy which allows to decrypt. Any future users that will
be given a key with respect to attributes such that the policy can be satisfied will then be able to
decrypt the data.

Key-Policy ABE. Key-policy attribute-based encryption (KP-ABE) is the dual to CP-ABE in the
sense that an access policy is encoded into the users secret key, e.g., (A ∧ C) ∨ D, and a
ciphertext is computed with respect to a set of attributes, e.g., {A,B}. In this example the user
would not be able to decrypt the ciphertext but would for instance be able to decrypt a ciphertext
with respect to {A,C}. An important property which has to be achieved by both, CP- and KP-
ABE is called collusion resistance. This basically means that it should not be possible for distinct
users to “pool” their secret keys such that they could together decrypt a ciphertext that neither of
them could decrypt on their own (which is achieved by independently randomizing users’ secret
keys).

3.3.1 ABE in ASSURED Framework

In the ASSURED framework, a TPM is used to support a KP-ABE where the secret key of a
blockchain user and the ciphertext are dependent on the user attributes. In such a system, the
decryption of a ciphertext is possible only if the set of attributes of the user key matches the
attributes of the ciphertext. The blockchain user (being authenticated to a ledger) can only have
decryption rights to the encrypted data stored on the ledger only if the user possesses some
attributes that make correct decryption. This allows data owners to share data safely with the
designated group of users rather than a third party or other users.

For instance, data encryption and access control is a topmost requirement in the “Public Safety”
ASSURED use case and needs to be complemented by specified policies and access control

ASSURED D4.3 PU Page 13 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

mechanisms to guarantee that only valid data retrievers can decrypt them. To achieve this re-
quirement, an assigned administrator pre-defines a policy access list that will be merged on the
smart contract to auto-check if different domains’/areas’ operational level’s entities could have
access to the operational data. Specified policies and access control mechanisms would be im-
plemented through ABE schemes to guarantee that only eligible entities can retrieve data from
the cloud if needed.

For the “Smart Manufacturing” ASSURED use case, data is stored on IoT gateways, and the data
which can be in the form of archives, snapshots, reports etc, are recorded at the respective cen-
tral database. Different IoT gateways and a central database will commit data sharing behaviours.
An IT administrator creates and defines an access policy control that is achieved through creating
attribute tokens granted for the different entities that interns run the ABE protocol with the prede-
fined access control trees to access the stored data based on their different levels of attributes.
Any illegible entity with the required attributes can then connect to the IT infrastructure to acquire
the necessary data. This would monitor the data access among the gateways and the database.

ABE is also required by the “Smart Aerospace” use case where the sensors within an aeroplane
can share data with the Secure Server Router (SSR) after passing a successful on- boarding
process through the ASSURED authentication mechanism. The SSR administrator needs first
to define the access policy in a form of smart contract by granting access tokens that regulates
the access to ASSURED private ledger. If the authentication is successful and the access policy
can be satisfied, the SSR can share its data with a Ground Station Server and the latter can then
share data with the analytics cloud Servers.

ABE will also be one of the main ASSURED components adopted by the “Smart Satellites” use
case where the Ground Station (GS) is allowed to share threat intelligence data if it processes
an access token that enables data sharing. The data access policy should be clearly defined
in the smart contracts so that access policies can be checked during data sharing. ASSURED
attestation mechanisms should enable CubeSat to perform attestation to the GS. The attestation
results can be verified and recorded on an accessible platform (the private ledger) for internal
entities. For external entities, ASSURED DLT will enable them to read the attestation data. In this
case, access control policy enforcement is required through ABE.

The TPM-based Wallet supports ABE that is mainly used to ensure legitimate attribute-based
access control (ABAC) to sensitive encrypted data. A trusted authority which can be many enti-
ties (in our context it is the SCB that takes up this role), generates the user attribute keys using
the authority master key. The trusted authority then sends the encrypted attribute symmetric de-
cryption keys together with the attribute policies to the edge device which contains an embedded
TPM Wallet. The TPM Wallet stores the decryption symmetric keys safely inside the TPM. Using
these keys together with the access control tree the TPM can recover the main decryption and
integrity keys that will be used by the host to check the message integrity through a message
authentication code (MAC) and decrypt a message respectively.

3.3.2 ABE in Searchable Encryption

Indeed, searchable encryption not only protects data privacy of data owners but also enables
data users to search over the encrypted data. However, it assumes that the user sending the
search query owns the decryption key and that the sender has to know the identity of the user
querying the data in order to encrypt using the corresponding encryption key. This raises the
question in ASSURED blockchain framework that the encrypted data is shared between several
receivers and is kept in a remote shared storage that is not trusted for confidentiality.

ASSURED D4.3 PU Page 14 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

To remedy the defects, we can borrow ideas from attribute-based encryption: only participants
with the appropriate permissions and the corresponding ABE (matching) attribute private keys
can decrypt and view the documents in the off-chain blocks containing the requested keywords.
Concretely, the secret decryption key of the encrypted documents containing the requested key-
words are related to a set of attributes in some fashion, for which holds that if there is a subset of
attributes that consists of at least t attributes that match the set of attributes associated with the
secret keys, then the secret keys can be used to decrypt the documents.

As we will see in Chapter 4, our searchable encryption scheme is built between the attestation
keywords and the corresponding location pointers to the ASSURED data storage engine where
the attestation raw data is stored. Therefore, the encryption of contents stored on the storage
engine is completely independent of the searchable encryption scheme. This brings a great
benefit: the contents stored on the ASSURED data storage engine can be encrypted using an in-
dependent attribute-based encryption (ABE) scheme. For example, we can use the ABE scheme
presented in [43], which is based on the Elliptic Curve Integrated Encryption Scheme, in our
searchable encryption. A general overview of the aforementioned ABE scheme using the TPM
Wallet in ASSURED framework can be found in D4.1 [12, Figure 12]. For a very detailed instan-
tiation of the ABE scheme in ASSURED, we refer to Deliverables 4.1 [12] and 4.2 [17] where
they described an ASSURED-designed ABE scheme that allows ASSURED blockchain users to
perform ABE decryption using the corresponding keys stored in the TPMs.

3.4 Searchable Encryption

As encrypted data is usually uploaded to remote servers to lighten personal devices’ storage
pressure and ease the data sharing with geographically demote devices, data retrieval from the
server encounters a big challenge. That is, how to request the server for desired data without
threatening the data confidentiality. Sensitive data must be preprocessed before submitting to
the server to keep confidentiality. Therefore, the server cannot locate data based on content or
semantics. The searchable encryption (SE) technologies were proposed to meet the demand
of rapid locating desired documents among the massive data in the cloud storage and simulta-
neously assuring privacy. Basically, SE acts as a data management technique that allows the
data owners to store and manage their data at a third-party, untrusted cloud server and allows
the data user to delegate search functionality to the cloud server to retrieve that data. Hence,
SE enables the secure storage and retrieval of data at the optimized cost. SE has application
in the scenario where we want both confidentiality and accessibility. In addition to its direct use
in searching encrypted data, SE has also changed the way any encryption technique can work.
Generally, an encryption technique either decrypts the complete data or none of it, which makes
it unsuitable for situations where only a part of the data needs to be decrypted. To design such
a flexible system, the SE technique can be used where one can search a particular part of the
encrypted data and thereby can achieve partial decryption.

3.4.1 Need for Searchable Encryption

As defined in the ASSURED conceptual architecture [16], data sharing is one of the cornerstones
of the ASSURED framework, as the overall principle for working with secure and trusted devices
in a flexible SoS deployment is highly based on the ability to produce and exchange the neces-
sary data between the different entities of the system. ASSURED uses DLTs to build a flexible
and expandable data sharing network, because DLT can provide the necessary features that is

ASSURED D4.3 PU Page 15 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

necessary to guarantee the trust that is necessary to be available in such a system as identified
in D4.1 [12], and the trustworthiness and immutability of any data sharing transaction that needs
to take place over an ASSURED deployment.

However, using ledgers has also some drawbacks, which mostly have to do with performance
during the execution of operations that need to be performed over the ledgers when it comes to
vast amounts of data or the introduction and querying of many records. For this purpose, hybrid
approaches are employed in ASSURED, such as having off-chain storage facilities where data
(especially the system traces, as monitored during the execution of a remote attestation process,
whose size might excess the order of KBytes) is placed and the location of those is provided as
pointers which are stored in the ledgers. The off-chain data is stored over a cloud-based data
storage engine which may not be trusted with security of sensitive data. As known, data privacy
issue are the most prominent and important one when it comes to cloud storage, and could
theoretically be easily resolved by storing the data in an encrypted form. However, although
encryption solves the problem of privacy, it also engenders some other serious issues including
infeasibility of the fundamental search operation, reduction in flexibility of sharing the data with
other users etc. To address these issues, the concept of searchable encryption is introduced
and developed on ASSURED blockchain ledger. SE allows blockchain ledger peer(s) to perform
search on encrypted and stored data on ledger(s) without disclosing any information about what
is being searched to the peer(s). Secure SE is the answer to this need.

3.4.2 Security Guarantees

Like the considerations when we measure other cryptosystems’ privacy performance, the Search-
able Encryption component in ASSURED should request the following security guarantees.

• Data Privacy. Searchable encryption depends on a third-party server to receive and store
scripts which imply a keyword-document relationship for later data retrieval. That is, the
index or the searchable ciphertext is visible to the server and may be exposed to eaves-
droppers in the public communication channel on the way to server storage. Data privacy
requires that the content of documents should be concealed, even though index or search-
able ciphertext is transmitted and stored, i.e., semantic security [3].

• Keyword Privacy. Given a search query, i.e., the token or the trapdoor representing the
keywords of user’s interest, keyword privacy requires that the token or the trapdoor should
not leak information about the underlying keyword while used for testing index or searchable
ciphertexts. The Keyword Guessing Attack (KGA) [6, 44] is famous for its vulnerability to
keyword privacy, exploiting freely manufactured ciphertexts of any keywords to infer the
keyword of a trapdoor.

• Search Pattern Privacy. Search pattern refers to information about whether two queries
are launched for the same keyword [20], which was used to be thought inevitable when
most search queries of searchable encryption schemes, especially SSE, were certain and
fixed for identical keywords.

• Access Pattern Privacy. Access pattern is the document identifiers returned for a search
[20]. At the end of the search, the query’s document identifiers may be revealed to get
search results returned. Such disclosure may further lead to unexpected data compromised
[27].

ASSURED D4.3 PU Page 16 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

As we will see in Chapter 4, the attestation raw data is encrypted under an ABE scheme and
stored on the ASSURED data storage engine. The searchable encryption scheme deployed in
ASSURED (see Chapter 4) is built between the attestation keywords and the corresponding lo-
cation pointers to the ASSURED data storage engine where the attestation raw data is stored.
The encryption of the attestation raw data is completely independent of the SSE scheme. Fur-
thermore, the location pointers are also encrypted using a symmetric encryption scheme (e.g.
AES-CBC), thus data privacy is guaranteed.

We have mentioned briefly before that the SCB will use the random oracles to generate random
strings related to the keyword w, and then mask the identifiers and the storage location informa-
tion of documents containing the keyword w. When adding/deleting a document, the SCB also
uses the random oracles to generate random strings to mask the corresponding addition/deletion
tokens. Therefore, when searching keywords (or adding/deleting documents) on the public ledger,
the keywords are not in plaintext and the related tokens will not leak information about the un-
derlying keywords while used for testing index or searchable ciphertexts. However, a limitation of
all known SSE constructions (including the one employed in ASSURED) is that the tokens they
generate are deterministic, in the sense that the same token will always be generated for the
same keyword. This means that searches leak statistical information about the user’s search pat-
tern. Currently, it is unknown how to design efficient SSE schemes with probabilistic trapdoors.
Fortunately, the security model in the SSE scheme employed in ASSURED is different from those
in literature, mainly in that all the tokens (including search, addition and deletion) are generated
by the SCB which is assumed to be honest and trusted comparing with the server (in literature)
that is honest but curious. So the search pattern privacy is also guaranteed in our (dynamic) SSE
scheme.

All existing schemes in the literature leak the access pattern. At the current stage, it is unknown
how to design efficient SSE schemes that can protect access pattern. Thus, we won’t consider
the access pattern privacy in our design as well. However, as mentioned above, we actually
have a different security model that all the privacy-related operations are performed by an honest
and trusted party, i.e., the Security Context Broker (SCB). So, we expect that we can obtain the
privacy guarantee of access pattern to some extent.

Captured Security Requirements: DLT-SCT-03, DLT-SCT-05, DLT-SCT-07, DLT-SCT-08, DLT-
SCT-13, DLT-SCT-14, DLT-SCT-17, DLT-SCT-21, DLT-SCT-22, DLT-SCT-25, DLT-SCT-34, DLT-
SCT-35, DLT-SCT-36, DLT-SCT-38, DLT-SCT-39, DLT-SCT-45, DLT-SCT-46, DLT-SCT-47, DLT-
DEC-06, DLT-SHA-14.

3.4.3 General Model

Though the searchable encryption technologies are categorized into two classes, i.e., Searchable
Symmetric Encryption (SSE) and Public-key Encryption with Keyword Search (PEKS), their four
algorithms are similar in syntax.

• Setup/Key Generation. In this algorithm, system parameters are set, and keys are gener-
ated for each party.

• Build Index/Encrypt. In this algorithm, the data owner processes the keywords of their
documents and uploads this script, i.e., index or searchable ciphertext, to the server.

• Token/Trapdoor Generation. In this algorithm, the authorized data user computes the
token or trapdoor based on the keyword of its interest, which is used for later testing with
an index item or a searchable ciphertext.

ASSURED D4.3 PU Page 17 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

• Search/Test. In this algorithm, the server validates the received token or trapdoor with
the index item or searchable ciphertext in storage to decide to return the corresponding
document or not.

There are few schemes that implement searchable encryption by making the ciphertext itself
searchable [42]; most of the schemes generate an encrypted index which is searchable. The
searchable encrypted index can be generated by extracting the metadata items w = (w1, . . . , wm)
from the main data file and encrypting them using a technique which enables search operation
over this index. This operation is performed by executing the encryption algorithm defined in the
searchable encryption scheme. These metadata items are often called the keywords in search-
able encryption terminology. The main data file is also encrypted with any standard symmetric-
key/asymmetric-key encryption. The symmetric key used for this purpose may be encrypted with
the same encryption technique which we used for generating the index.

The encrypted index and the encrypted data file are then stored on a cloud server (the data stor-
age engine in ASSURED) that is generally assumed to be honest but curious, i.e. it can be trusted
to correctly perform storage and query protocols, however, it tries to learn as much information
as possible. This whole task is done by an entity named the Security Context Broker (SCB) in
ASSURED. Now, another entity called the data user wants to retrieve the encrypted information
stored at the cloud server. The user needs to first search among the data files to retrieve what
he/she needs. The data user delegates this search operation to the cloud server by generating
a search trapdoor or sometimes called a search token for the keyword he/she is looking for, by
using the trapdoor algorithm defined in the searchable encryption scheme (Trapdoors) and sends
it to the cloud server. Using the search trapdoor, the cloud server is now able to perform search
in the encrypted domain and returns the reference to the file which contains the queried key-
word without actually decrypting anything. Figure 3.1 gives a general model of an index-based
scheme.

Update I = BuildIndexK(f ,w) I ∥ Enc(f1, . . . , fn)
I ∥ Enc(f1, . . . , fn)

Query
t = TrapdoorK(w)

id = Search(I, T)

T

Enc(fid)

User Database

Figure 3.1: General Model of an Index-Based Searchable Encryption Scheme

To generate the index, generally there are two approaches, the forward approach,

document id keywords
f1 wi1 , wi2 , wi3 . . .
f2 wj1 , wj2 , wj3 , . . .
.
fn wn1 , wn2 , wn3 , . . .

and the inverted approach,

ASSURED D4.3 PU Page 18 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

keyword document ids
w1 fk1 , fk2 , fk3 . . .
w2 fl1 , fl2 , fl3 , . . .
.
wm fm1 , fm2 , fm3 , . . .

In the forward approach, an index is built over the data files f = (f1, . . . , fn), i.e. to each data
file some keywords are associated. In the inverted approach, an index is built over the keywords
w = (w1, . . . , wm), i.e. it indexes each keyword belongs to that data file.

In the forward-index approach, the search time varies linearly with the number of data file. In
the inverted-index approach, the search time varies with the number of documents containing a
particular keyword and it can be reduced to sublinear if a key-value dictionary approach, such as
a hash table/tree, is used to build the index. One of the approaches is followed while developing
a searchable encryption technique but generally it is not shown explicitly in the construction. The
only focus of a searchable encryption scheme is to encrypt the associated metadata (keywords)
with the data file in an efficient way.

Due to the efficiency and scalability issue, we will not make use of public key-based SE
but only symmetric key-based SE. For searchable symmetric encryption component in
ASSURED, we will investigate the inverted-index approach in the design and implementa-
tion stages since it allows a sublinear search complexity as mentioned above. Basically,
ASSURED will use SSE technique in data query over the on-chain structures. The on-chain
structures may store the index structure related to the data/information along with their off-chain
and/or database location. An entity that performs a query may just provide a keyword-hidden to-
ken to the admin who manages the on-chain structures. Then, an encrypted location information,
related to off-chain data storage engine, can be returned to that entity for decryption. In this way,
the admin cannot see what data the entity is currently searching. Similar technique can be also
used in backend database storage for privacy-preserving database data query.

3.4.4 Searchable Symmetric Encryption

As introduced in Section 3.1, symmetric encryption allows a single user to read and write data,
and allows only the secret key holder to create searchable ciphertexts and trapdoors [46]. The
immediate application of searchable symmetric encryption (SSE) can be seen in the scenario
where some user wants to store his/her data on the cloud storage in an encrypted form and later
he/she can perform search on it to retrieve the required data [22]. The index approach is explicitly
mentioned and addressed in the SSE schemes only. The first SSE was proposed by Song et
al. [36]. The proposed scheme supports equality query and was developed to handle just one
keyword. To encrypt the data, first they break it into fixed size blocks called words and then each
word is encrypted independently by inserting a hash value in the specific format. The ciphertext
resulting from this process is itself searchable. The cloud server performs search by extracting
the hash and looking for the specific format indicated by the user. However, this scheme has
a restriction that it needs to break the data into fixed size words which are incompatible with
the existing encryption standard. Further, they did not provide any formal security definition or
security proof for their scheme. Later, in 2003, Goh [24] relaxed the fixed size restriction in
the Song et al. scheme. They used a direct index approach where an index is built for every
data file using Bloom filters. In 2005, Chang and Mitzenmacher [10] developed an SSE scheme
and, like the Goh scheme, they used a direct index approach where an index is built based on

ASSURED D4.3 PU Page 19 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

the dictionary of search keywords instead of Bloom filters, which inherently have very high false
positive rate. In 2006, Curtmola et al. [20] for the first time used an inverted-index approach and
achieved the sublinear search time.

Subsequent researches [7, 8, 11, 28–30, 32, 33] start to extract an auxiliary index so that there is
no need to scan the whole document and thus search is accelerated. Security definitions were
correspondingly formalized to depict the security requirements for SSE, e.g., semantic security
against adaptive Chosen Keyword Attack (IND-CKA) [24]. The scheme in [24] was later pointed
out by [10] leaking information like the length of “1” entries in the Bloom filter and incurs an
enhanced version on its security definition followed by a modified scheme. Later on, simulation-
based security models, including non-adaptive indistinguishability and adaptive indistinguisha-
bility [20] have been presented to outline better the security requirements for SSE, followed by
concrete schemes. Kurosawa et al. [32] later pointed out the second scheme of [20] has design
flaws and fails to meet their claimed security. In such a tortuous journey, Searchable Symmetric
Encryption schemes, as well as corresponding security models, have been continuously investi-
gated.

3.4.5 Dynamic Searchable Symmetric Encryption

An important challenge for the searchable encryption community has been the development of
dynamic schemes. As large-scale data storage always receives many data update requests, a
dynamic searchable symmetric encryption (DSSE) that supports efficient data or keyword modi-
fication via an update mechanism better meets the user requirements. Until the work of Kamara,
Papamanthou and Roeder [30], there was no efficient dynamic searchable encryption scheme.
By ‘efficient’, we mean a scheme whose search complexity is sublinear in the number of docu-
ments, whose encrypted database size is linear in the size of the plain dataset, and whose update
complexity is linear in the number of updated document/keyword pairs. The scheme of Kamara
et al. is based on the encrypted-linked-list-based multimap of [19,20] and performs insertions by
(logically) enqueuing each new entry in the right list. Efficient deletions are supported by encod-
ing a dual representation of the index: also using linked lists, the client can easily tell the server
which tokens of the encrypted database correspond to a given document, and hence tell him to
remove them when needed.

Unfortunately, a dynamic SSE always encounters more challenges than a static one. For ex-
ample, dynamism allows for new means of attack, and regular dynamic index-based schemes,
such as the ones in [7], are subject to devastating adaptive attacks [45]. To thwart these attacks,
forward-private schemes have been constructed [4, 38], i.e. schemes whose update request
should not reveal anything about queried keywords before. Also, for most dynamic schemes, a
deletion only logically removes the entries, but the server is still able to decrypt these deleted
entries—and hence extract some supposedly erased information—for any subsequent search
request matching these. However, this problem can be fixed using backward private construc-
tions [5]. The backward security means that the queries cannot be performed over deleted docu-
ments. Some formalized work by Stefanov et al. [38] and Bost et al. [4, 5], have shifted efforts to
develop dynamic SSE schemes with forward and backward security.

In 2016, Garg et al. constructed a forward-secure DSSE scheme based on their TWORAM [23].
In 2017, Kim et al. utilized the dual dictionary to construct a forward-secure DSSE scheme
that supports real deletion [31]. In 2018, Song et al. proposed a counter-based forward-secure
DSSE scheme FAST/FASTIO with real deletion support [37]. Their proposed scheme achieves
I/O efficiency by caching historical search results.

ASSURED D4.3 PU Page 20 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

In 2016, Hoang et al. presented forward-and-backward-secure DOD-DSSE [26]. The core idea
of DOD-DSSE is to let the client fetch all related data from the server and to perform Search
or Update operations locally. In 2017, Bost et al. [5] constructed four forward-and-backward-
secure DSSE schemes: Fides, Dianadel, Moneta and Janus. Subsequently, Chamani et al. [9]
proposed three improved constructions, including Type-I scheme Orion, Type-II scheme Mitra
and Type-III scheme Horus. At the same time, Sun et al. [40] proposed a practical Type-III scheme
Janus++ by making use of their symmetric puncturable encryption. In 2019, Li et al. constructed
a forward-and-backward-secure DSSE Khons with the hidden pointer ciphertext structure and
partition search technique [34]. In 2020, He et al. [25] presented a forward-and-backward-secure
DSSE scheme CLOSE-F/CLOSE-FB with constant client storage. He et al.’s approach is to
combine the counter and chain structure and use the global counter to find all chain structures of
ciphertexts.

In the same year, Demertzis et al. [21] proposed three forward-and-backward-secure DSSE
scheme, QOS, SDa and SDd with constant client storage. The first two schemes in [21] achieve
interactive real deletion, and the third scheme uses oblivious map and a tree-based encrypted
index as building blocks. Amjad et al. [1] proposed several schemes with all types of backward
privacy by leveraging the power of Intel SGX. They are all non-interactive but depending on the
security and reliability of trusted execution environments. Very recently in 2021, Sun et al. [39]
proposed a forward-and-backward-secure DSSE scheme Aura, which achieves non-interactive
real deletion in the cost of extra client-side storage resources to stash Delete queries.

In the ASSURED project, we will prefer to make the research work [30] as our starting point.
This is because their construction provides high search efficiency and low client storage
cost. In Chapter 4, we will see how to leverage the features of it and to design and develop a dy-
namic SSE scheme to maintain strong search privacy and data security but also highly scalability
and practicality while merging the dynamic SSE with our ASSURED blockchain framework, in the
public ledger’s secure metadata search. Intuitively, we will enable the SCB to construct keyword-
based index structure for attestation metadata and the corresponding attestation reports’ storage
pointers, and this structure can be further dynamically expanded as the increase of reports. The
structure and the pointers will be further encrypted and stored on an ASSURED public ledger. For
each external party who is trying to search over the encryption, the SCB will construct a search
token corresponding to the given keyword, and with the token, the public ledger peer(s) can lo-
cate the required encrypted pointers. Then the external party can use the pointer to retrieval the
encrypted attestation raw data from the data storage engine. Then TPM-enabled ABE scheme
is mainly used to ensure legitimate attribute-based access control to sensitive encrypted data.
In our ASSURED framework, blockchain users will send the encrypted attribute symmetric de-
cryption keys together with the attribute policies to the edge device which contains an embedded
TPM Wallet. The TPM Wallet stores the decryption symmetric keys safely inside the TPM. Using
these keys together with the access control tree, if the host has matching attributes, the TPM can
recover the main decryption key that will be used by the host to decrypt the off-chain attestation
metadata. Note more details about interaction among DSSE keys and TPM, please refer to the
deliverable D4.5 [18].

ASSURED D4.3 PU Page 21 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Chapter 4

ASSURED Initial Designed Dynamic
Searchable Symmetric Encryption Scheme

4.1 Notations

The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite binary strings
as {0, 1}∗. The notation [n] represents the set of integers {1, . . . , n}. We write x← χ to represent
an element x being sampled from a distribution χ, and x←$X to represent an element x being
sampled uniformly at random from a set X. The output x of a probabilistic algorithmA is denoted
by x← A and that of a deterministic algorithm B by x := B. Given a sequence of elements v we
refer to its ith element either as vi or v[i] and to its total number of elements as #v. If S is a set
then #S refers to its cardinality. W denotes the universe of words. If f = (w1, . . . , wm) ∈ Wm is
a file, then #f denotes its total number of words and |f | is its bit length. Also, f̄ is the file that
results from removing all duplicates from f (i.e., f̄ contains only the unique words in f sequenced
according to the order in which they first appear in f). If s is a string then |s| refers to its bit length.
We denote the concatenation of n strings s1, . . . , sn by ⟨s1, . . . , sn⟩. We denote by ⊥ the special
value to signify an error or a failure in the execution of the protocol.

We use various data structures including linked lists, arrays and dictionaries. If L is a list then #L

denotes its total number of nodes. If A is an array then #A is its total number of cells, A[i] is the
value stored at location i ∈ [#A] and A[i] := v denotes the operation that stores v at location i
in A. A dictionary (also known as a key-value store or associative array) is a data structure that
stores key-value pairs (s, v). If the pair (s, v) is in T, then T[s] is the value v associated with s.
T[s] := v denotes the operation that stores the value v under search key s in T and #T is the
number of pairs in T. We sometimes write s ∈ T to mean that there exists some pair in T with
search key s.

4.2 System Model

We employ a multi-party model mainly including the following four parties: a trusted data owner,
a trusted SCB, a semi-trusted ASSURED data storage engine, and a collection of users who are
authorized to search. The task for each party is described as follows:

• Data owner: An authorized data owner would like to outsource a collection of documents
f = (f1, . . . , fn) together with some keywords w = (w1, . . . , wm). In ASSURED context,
we assume that the devices who generate the attestation data are the data owners.

ASSURED D4.3 PU Page 22 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

• Blockchain Peers: The main functions the peers can provide are: send the attestation
bundle, including attestation results, attestation ID, encrypted attestation raw data, and
related metadata to the SCB; perform secure share over the public ledger; and help private
channel users to access the attestation results stored on the private ledger.

• ASSURED Ledgers: The public ledger stores the encrypted index structure and encrypted
pointers; and the private ledger is used to store attestation results and related information.

• SCB: After obtaining the attestation bundle from the peers, it forwards the encrypted data
to the data storage engine, and then receives the corresponding pointer. It makes use
of searchable encryption component to construct encrypted index structure and encrypted
pointer, and further stores them on the public ledger. The SCB also performs search/update
token generation tasks. When the SCB receives a query keyword from an external party,
it constructs a search token so that the peer can search over the public ledger and then
returns related encrypted pointer. The SCB can further decrypt the pointer for the external
party. We here assume that the SCB is honest and trusted. This means it will follow the
protocol correctly.

• ASSURED Data Storage Engine: The off-chain cloud-based storage engine stores the
encrypted data under an ABE scheme, and responds to the SCB’s (and external parties
with granted rights) requests and queries. The storage engine is relied on to provide highly-
available and reliable storage.

• Data user: If an external party wants to search the data that contains a particular keyword,
he/she has to submit this query keyword to the SCB. After searching, the SCB returns the
encrypted data that contains this keyword to the user. As for internal private channel users,
e.g., a device, it can directly request the private ledger peer to return the attestation result
and plaintext pointer. In the ASSURED context, the external and internal parties can be
both regarded as data user.

A considerable amount of attestation data can be viewed as a sequence of n files f = (f1, . . . , fn),
where file fi is a sequence of words (w1, . . . , wm) from a universe W . We assume that each file
(i.e. each attestation file) has a unique identifier id(fi), which we regard this as a pointer, e.g.,
_uid, which will be further defined in Chapter 5. We further note that this identifier is distinct and
different from the attestation ID, and it is only used to link its storage location back to the data
storage engine. We also assume that all the attestation data can be dynamic, so at any time an
attestation file may be added or removed. We note that the files do not have to be text files but
can be any type of data as long as there exists an efficient algorithm that maps a given document
to a file of keywords from W . Given a keyword w we denote by fw the set of files in f that contain
w. If c = (c1, . . . , cn) is a set of encryptions of the files in f , then cw refers to the ciphertexts that
are encryptions of the files in fw.

Definition 2 (Dynamic SSE). A dynamic index-based SSE scheme is a tuple of nine polynomial-
time algorithms SSE = (Gen,Enc, SrchToken,AddToken,DelToken, Search,Add,Del,Dec) such that:

• K ← Gen(1λ): is a probabilistic algorithm that takes as input a security parameter λ and
outputs a secret key K.

• (γ, c) ← Enc(K, f): is a probabilistic algorithm that takes as input a secret key K and a
sequence of files f . It outputs an encrypted index γ, and a sequence of ciphertexts c.

ASSURED D4.3 PU Page 23 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

• τs ← SrchToken(K,w): is a (possibly probabilistic) algorithm that takes as input a secret
key K and a keyword w. It outputs a search token τs.

• (τa, cf) ← AddToken(K, f): is a (possibly probabilistic) algorithm that takes as input a
secret key K and a file f . It outputs an add token τa and a ciphertext cf .

• τd ← DelToken(K, f): is a (possibly probabilistic) algorithm that takes as input a secret key
K and a file f . It outputs a delete token τd.

• Iw := Search(γ, c, τs): is a deterministic algorithm that takes as input an encrypted index
γ, a sequence of ciphertexts c and a search token τs. It outputs a sequence of identifiers
Iw ⊆ c.

• (γ′, c′) := Add(γ, c, τa, c): is a deterministic algorithm that takes as input an encrypted
index γ, a sequence of ciphertexts c, an add token τa and a ciphertext c. It outputs a new
encrypted index γ′ and sequence of ciphertexts c′.

• (γ′, c′) := Del(γ, c, τd): is a deterministic algorithm that takes as input an encrypted index
γ, a sequence of ciphertexts c, and a delete token τd. It outputs a new encrypted index γ′

and new sequence of ciphertexts c′.

• f := Dec(K, c): is a deterministic algorithm that takes as input a secret key K and a
ciphertext c and outputs a file f .

4.3 Dynamic Searchable Symmetric Encryption Scheme

4.3.1 A High Level Description

In this chapter we will mainly introduce a detailed dynamic SSE scheme used in ASSURED. In
what follows, we will first provide a high level description of the dynamic SSE, and more details
can be found in the follow-up sections.

Let λ ∈ N be the security parameter, SKE = (Gen,Enc,Dec) be an anonymous and CPA-secure
symmetric encryption scheme and F : {0, 1}λ×{0, 1}∗ → {0, 1}λ, G : {0, 1}λ×{0, 1}∗ → {0, 1}∗,
and P : {0, 1}λ × {0, 1}∗ → {0, 1}λ be pseudorandom functions. Let H1 : {0, 1}∗ → {0, 1}∗ and
H2 : {0, 1}∗ → {0, 1}∗ be random oracles.

To set up the encrypted database, the SCB first samples three λ-bit strings K1, K2, K3 uni-
formly at random and generates K4 ← SKE.Gen(1λ). The collection of files f is then en-
crypted using the symmetric encryption scheme SKE to obtain a sequence of ciphertexts c =
(SKE.EncK4(f1), . . . , SKE.EncK4(f#f)).

To build the index, for each keyword w ∈ W we construct a list Lw. Each list Lw is composed of
#fw nodes (N1, . . . , N#fw) that are stored at random locations in the search array As. The node Ni
is defined as Ni = ⟨id, addrs(Ni+1)⟩, where id is the unique file identifier of a file that contains w
and addrs(N) denotes the location of node N in As. Here the above process is constructed based
on the inverted approach as introduced in the previous chapter. And this process is completed
by the SCB. Before this process, the SCB has to extract all the necessary keywords from the
metedata received from the peers, which are related to the attestation data. After the keywords
are extracted, the SCB will link each of them to all the existing attestation data, for example, a
keyword w1 is associated with attestation files f1 and f2, in which f1 and f2 are seen as pointers

ASSURED D4.3 PU Page 24 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

(referring to the data storage engine). Once the process is done, the SCB will have a group of
keywords to form a keyword dictionary. This dictionary will be stored on the public ledger, so
that external parties can understand which keywords they can use for queries. We note that at
this stage, we do not fully define concrete keywords, e.g., “Monday”, “attestation time”, “device’s
name”. A concrete generation for all the keywords will be considered in the implementation stage.
And this will not affect the current design, because we currently define an abstract and generic
construction for these keywords and later concrete values can be directly adopted in this design.

For each keyword w, an index to the head of Lw is then inserted into the search table Ts under
search key FK1(w), where K1 is the key to the PRF F . Each list is then encrypted using SKE
under a key generated as GK2(w), where K2 is the key to the PRF G.

To search for a keyword w, it suffices for the requesting entity to send the values FK1(w) and
GK2(w). The server can then use FK1(w) with Ts to recover the index to the head of Lw, and
use GK2(w) to decrypt the list and recover the identifiers of the files that contain w. As long as T

supports O(1) lookups (which can be achieved using a hash table), the total search time for the
server is linear in #fw, which is optimal since at a minimum the server needs to fetch the relevant
documents just to return them.

To support efficient dynamic update, we add an extra (encrypted) data structure Ad called the
deletion array that the ledger can query (with a token provided by the SCB) to recover pointers to
the nodes that correspond to the file being deleted. More precisely, the deletion array stores for
each file f a list Lf of nodes that point to the nodes in As that should be deleted if file f is ever
removed. So every node in the search array has a corresponding node in the deletion array and
every node in the deletion array points to a node in the search array. Throughout, we will refer to
such nodes as duals and write N∗ to refer to the dual of a node N.

The encrypted pointer is stored in a node with a homomorphic encryption scheme. This is similar
to the approach used by van Liesdonk et al in [41] to modify the encrypted search structure they
construct. By providing the ledger with an encryption of an appropriate value, it can then modify
the pointer without ever having to decrypt the node. We use the “standard” private-key encryption
scheme which consists of XORing the message with the output of a PRF. This simple construction
also has the advantage of being non-committing (in the private-key setting) which we make use
of to achieve CKA2-security.

4.3.2 A Detailed Description

The ASSURED designed dynamic SSE scheme SSE = (Gen,Enc, SrchToken,AddToken,DelToken,
Search,Add,Del,Dec) is described in detail as the following.

Setup. Let λ ∈ N be the security parameter, SKE = (Gen,Enc,Dec) be an anonymous and CPA-
secure symmetric encryption scheme and F : {0, 1}λ×{0, 1}∗ → {0, 1}λ, G : {0, 1}λ×{0, 1}∗ →
{0, 1}∗, and P : {0, 1}λ × {0, 1}∗ → {0, 1}λ be pseudo-random functions. Let H1 : {0, 1}∗ →
{0, 1}∗ and H2 : {0, 1}∗ → {0, 1}∗ be random oracles. Setting the keywords universe W , which
is a finite set of all possible keywords that occur in all files (including the files added in the future)
and are represented by binary strings of arbitrary finite length.

• Gen(1λ): Sample three λ-bit strings K1, K2, K3 uniformly at random and generate K4 ←
SKE.Gen(1λ). Output K = (K1, K2, K3, K4).

Building the index structure.

ASSURED D4.3 PU Page 25 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

• Enc(K, f):

1. For 1 ≤ i ≤ #f , let ci ← SKE.EncK4(fi). Set c = (c1, . . . , c#f).

2. Let As and Ad be arrays of sufficiently large size and let Ts and Ts be dictionary of size
#W and #f , respectively. Denote by lenaddr the size of the address of a cell in As, and
by lenid the size of the identifier of a file. We assume 0 is a lenaddr-length string of 0’s.

3. For each word w ∈ W : (Steps 3 and 4 here must be performed in an interleaved
fashion to set up As and Ad at the same time.)

(a) Create a list Lw of #f nodes (N1, . . . , N#f) stored at random locations in the search
array As and defined as:

Ni :=
(〈
idi, addrs(Ni+1)

〉
⊕H1(Kw, ri), ri

)
where idi is the file identifier of the ith file in fw, addrs(Nj) is the address of node
Nj in the search array As, ri is a λ-bit string generated uniformly at random, Kw :=
PK3(w) and addrs(N#fw+1) = 0.

(b) Store a pointer to the first node of Lw in the search table by setting

Ts[FK1(w)] :=
〈
addrs(N1), addrd(N

∗
1)
〉
⊕GK2(w),

where N∗i is the dual of Ni, i.e., the node in Ad whose fourth entry points to Ni in As,
and addrd(N

∗
i) is the address of node N∗i in the deletion array Ad.

4. For each file f in f : (Steps 3 and 4 here must be performed in an interleaved
fashion to set up As and Ad at the same time.)

(a) Create a list Lf of #f̄ dual nodes (D1, . . . , D#f̄) stored at random locations in the
deletion array Ad and defined as follows: each entry Di is associated with a word
w, and hence a node N in Lw. Let N+1 be the node following N in Lw, and N−1 the
node previous to N in Lw. Then, define Di as follows:

Di :=

(〈
addrd(Di+1), addrd(N

∗
−1), addrd(N

∗
+1), addrs(N), addrs(N−1), addrs(N+1),

FK1(w)
〉
⊕H2(Kf , r

′
i), r

′
i

)

where r′i is a λ-bit string generated uniformly at random, Kf := PK3(f), and
addrd(D#f̄+1) = 0.

(b) Store a pointer to the first node of Lf in the deletion table by setting:

Td[FK1(f)] := addrd(D1)⊕GK2(f).

5. Output (γ, c), where γ := (As, Ts, Ad, Td).

Keyword search.

• SrchToken(K,w): Compute and output τs := (FK1(w), GK2(w), PK3(w)).

• Search(γ, c, τs):

ASSURED D4.3 PU Page 26 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

1. Parse τs as (τ1, τ2, τ3) and return an empty list if τ1 is not present in Ts.

2. Recover a pointer to the first node of the list by computing ⟨α1, α
′
1⟩ := Ts[τ1]⊕ τ2.

3. Look up N1 := A[α1] and decrypt with τ3, i.e., parse N1 as (ν1, r1) and compute

⟨id1, addrs(N2)⟩ := ν1 ⊕H1(τ3, r1).

4. For i ≥ 2, decrypt node Ni as above until αi+1 = 0.

5. Let I = {id1, . . . , idm} be the file identifies revealed in the previous steps and output
{ci}i∈I , i.e., the encryptions of the files whose identifiers were revealed.

File addition.

• AddToken(K, f):

1. Let (w1, . . . , w#f̄) be the unique words in f in their order of appearance in f . Compute

ϕa := (FK1(f), GK2(f), π1, . . . , π#f̄),

where for all 1 ≤ i ≤ #f̄ :

πi :=

(
FK1(wi), GK2(wi), ⟨id(f),0⟩ ⊕H1(PK3(wi), ri), ri,

⟨0,0,0,0,0,0, FK1(wi)⟩ ⊕H2(PK3(f), r
′
i), r

′
i

)
,

and ri, r
′
i are λ-bit strings generated uniformly at random.

2. Compute cf ← SKE.EncK4(f) and output τa := (ϕa, cf).

• Add(γ, c, τa):

1. Parse τa as ((τ1, τ2, π1, . . . , π#f̄), c) and return ⊥ if τ1 is not in Td.

2. Find #f̄ new and free locations (φ1, . . . , φ#f̄) in the search array As, and #f̄ new and
free locations (φ∗

1, . . . , φ
∗
#f̄

) in the deletion array Ad. Let φ∗
#f̄+1

= 0.

3. For 1 ≤ i ≤ #f̄ :

(a) Recover a pointer to the first node N1 of the list by computing ⟨α1, α
∗
1⟩ := Ts[πi[1]]⊕

πi[2].
(b) Sore a new node at location φi and modify its forward pointer to N1 by setting

As[φi] :=
(
πi[3]⊕ ⟨0lenid , α1⟩, πi[4]

)
.

(c) Update the search table by setting Ts[πi[1]] := ⟨φi, φ
∗
i ⟩ ⊕ πi[2].

(d) Update the dual of N1 by setting Ad[α
∗
1] :=

(
D̃1 ⊕ ⟨0, φ∗

i ,0,0, φi,0, 0
|πi[1]|⟩, r

)
,

where (D̃1, r) := Ad[α
∗
1].

(e) Update the dual of As[φi] by setting Ad[φ
∗
i] :=

(
πi[5]⊕⟨φ∗

i+1,0, α
∗
1, φi,0, α1, πi[1]⟩, πi[6]

)
.

(f) If i = 1, update the deletion table by setting Td[τ1] := φ∗
1 ⊕ τ2.

4. Update the ciphertexts by adding c to c.

ASSURED D4.3 PU Page 27 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

File deletion.

• DelToken(K, f): Output τd := (FK1(f), GK2(f), PK3(f), id(f)).

• Del(γ, c, τd):

1. Parse τd as (τ1, τ2, τ3, id) and return ⊥ if τ1 is not in Td.

2. Find the first node of Lf by computing α′
1 := Td[τ1]⊕ τ2.

3. For 1 ≤ i ≤ #f̄ :

(a) Decrypt Di by computing ⟨α1, α2, α3, α4, α5, α6, µ⟩ := D̃i ⊕ H2(τ3, r), where Di =
(D̃i, r) := Ad[α

′
i].

(b) Delete and free Di by setting Ad[α
′
i] to a random (6 · lenaddr + |µ|+ λ)-bit string.

(c) Delete and free Di’s dual by setting As[α4] to a random (lenid+lenaddr+λ)-bit string.
(d) Let N−1 be the node that precedes Di’s dual. Update N−1’s “next pointer” by setting:

As[α5] := (β1 ⊕ ⟨0lenid , α4 ⊕ α6⟩, r−1), where (β1, r−1) := As[α5]. Also, update the
pointers of N−1’s dual by setting

Ad[α2] :=
(
β2 ⊕ ⟨0,0, α′

i ⊕ α3,0,0, α4 ⊕ α6, 0
|µ|⟩, r∗−1

)
,

where (β2, r
∗
−1) := Ad[α2].

(e) Let N+1 be the node that follows Di’s dual. Update N+1’s dual pointers by setting:

Ad[α3] :=
(
β3 ⊕ ⟨0, α′

i ⊕ α2,0,0, α4 ⊕ α5,0, 0
|µ|⟩, r∗+1

)
,

where (β3, r
∗
+1) := Ad[α3].

(f) Set α′
i+1 := α1.

4. Remove the ciphertext that corresponds to id from c.

5. Remove τ1 from Td.

File decryption.

• Dec
(
K, {ci}i∈I

)
: For i ∈ I, let fi ← SKE.DecK4(ci). Output {fi}i∈I .

Note here, we only give a mathematically self-contained description in this subsection,
the detailed description of the operation flow in combination with other components will
be deferred to Section 4.5, such as who will run the algorithm for each step. At the current
stage, we expect to define the DSSE scheme at an abstract and make use of the construc-
tion as a black-box. This is mainly based on the following reasons:

1. Modules design (“plug & play”) allows for greater flexibility of the overall architecture.

2. As we have mentioned in Section 3.4.2, all currently known SSE schemes still suffer some
privacy issues. We expect that some more practical and secure schemes will be proposed
in the near future, then we can easily replace the scheme without changing other compo-
nents.

3. If some security vulnerabilities are found, we can easily make a drop-in replacement.

ASSURED D4.3 PU Page 28 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

4.4 Flexible Attribute-Based Encryption Interface

Our DSSE scheme can be easily extended to support any ABE mechanisms that involve tech-
niques of issuing keys that bound to the devices’ attributes. These keys are called attribute keys.
Only the requesting entity who has a matching attributes can decrypt the key and decrypt the
contents in the key-policy ABE setting.

In the case of attestation raw data, the contents are stored actually in the ASSURED data storage
engine. The index-based searchable encryption scheme is established between the attestation
keywords and the corresponding location pointers (i.e., the _uid, see Chapter 5) to the ASSURED
data storage engine where the attestation raw data are stored. And thus, the encryption of the
contents stored on the ASSURED data storage engine are completely independent of the SSE
scheme.

The contents stored on the ASSURED data storage engine can be encrypted using an indepen-
dent ABE scheme. When a requesting entity launches a search request, and gets back a set
of location pointers, the SCB retrieves the encrypted contents stored in the corresponding loca-
tion pointers from the ASSURED data storage engine. In this case, any requesting entity will be
able to have access to the (encrypted) raw data but only those that can produce the necessary
attributes should be able to decrypt the encrypted data.

We make use of an ABE instantiation ABE = (Gen,Enc,Dec) as a black-box and do not rely on
its concrete construction. In other words, the dynamic searchable encryption scheme deployed
in ASSURED can be combined with any ABE scheme. For an instantiation of the ABE scheme
in ASSURED, we refer to Deliverables 4.1 [12] and 4.2 [17] where they describe an ASSURED-
designed ABE scheme that allows ASSURED block chain users to perform ABE using their em-
bedded TPMs. The proposed ABE will provide a secure attribute based encryption/decryption
for the formatted data via fast and efficient encryption technology where attribute keys are stored
into the TPM for extra protection and secure management of various encryption/decryption keys.

4.5 DSSE Secure Data Operation

Basically, we have two kinds of data to deal with for off- and on-chain data storage and access,
one is the attestation raw data and the other is the attestation result data. In addition, as identified
in ASSURED DLT Network, we employ a hybrid approach where we do not store full copies of
the relevant attestation data on the blockchain for performance and efficiency consideration as
well as scalability and sharing facilitation reasons. Instead, we make use of both the ledgers
and off-chain storage to record the data; attestation result data is stored on the private ledger
whereas the accompanying raw data (e.g., system traces, control-flow traces or digest lists of
loaded binaries) is stored in the ASSURED Data Storage Engine.

Regarding the private ledger, the core storing data is

• the attestation identifier, e.g., attestation ID attID,

• the corresponding attestation result,

• the (signed) location pointer to the corresponding encrypted attestation raw data where it is
stored on the ASSURED Data Storage Engine, and

ASSURED D4.3 PU Page 29 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

• the hash of the concatenation of the following data: the attestation identifier, the correspond-
ing encrypted attestation raw data, and the location pointer to the corresponding encrypted
attestation raw data stored in the ASSURED Data Storage Engine.

Note that, by the signed location pointer, we mean that the pointer is digitally signed by the SCB.
And thus, data storage engine is able to verify if the given pointer is validated and granted by the
SCB via the verification of the signature. And further, the hash value above is used to maintain
the integrity of the storage data, linking with attestation ID and storage location.

On the public ledger, the information we store are

• a copy of the hash value stored in the private ledger (see the fourth item in the private
ledger above), and

• DSSE related data which mainly includes the index-based database and the encrypted
location pointers (associated with the copy of hash value corresponding to the same attID)
to the ASSURED Data Storage Engine where attestation raw data is stored, allowing to
query over those data efficiently.

We note that the encrypted pointers stored on the public ledger are not signed by the SCB before
storage. They, instead, will be signed after decryption and before being sent to external parties.
In this way, the signature can guarantee that the pointers held by the external parties are those
granted by the SCB.

Blockchain Peers: Blockchain peers are considered as the main entities, along with the SCB,
to perform the DSSE operations, and they are the ones who maintain the ledgers. We denote
the Peers that performs operations on public and private ledgers as PeerA and PeerB, respec-
tively. We note that these are only notations used to distinguish operations on public and private
ledgers, and PeerA/B could be also a set of peers (note this depends how many peers we set per
blockchain channel in the implementation stage).

Pointer: We remark that: the pointer mentioned above is not necessarily a specific real storage
address pointer to the (encrypted) attestation raw data stored on the data storage engine, it
can be a pseudo-pointer so that when this pseudo-pointer is given to external parties when the
searches are done, the specific storage location will not be disclosed in particular. For example,
the pseudo-pointer can be a pseudorandom permutation or an encryption of the real location
pointer, we will discuss the related data storage structure in more details in Chapter 5. For
simplicity, we still call it the location pointer if there is no ambiguity.

Workflow Overview: The full workflow of the designed DSSE on public ledger and data storage
and access on private ledger are described as follows (see Figure 4.1 and 4.2). At a high level,
the data to be uploaded is first transmitted from a PeerB to the SCB, then the SCB sends the
encrypted attestation raw data to the data storage engine and gets the corresponding location
(pseudo-) pointers. Next, the SCB computes the corresponding hash values, and sends the
attestation bundle (hash values, attestation results, attestation ID, pseudo-pointers) back to the
PeerB, so that the peer is able to merge those information on the private ledger. The SCB further
generates the index-based structure related to the searchable function, and sends the index-
based structure, encrypted location pointers and the keyword dictionary to the PeerA.

When it comes to searching, the external party first scans the public ledger, finds the interesting
keywords and sends them to the SCB. The SCB then generates the search tokens, and request
PeerA to perform the search function on the public ledger, retrieves and decrypts the encrypted
location pointers. The pointers, with the SCB’s digital signature, are then returned to the external

ASSURED D4.3 PU Page 30 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Figure 4.1: General Workflow of DSSE Secure Data Storage and Search on Public Ledger

party which will request the data storage engine to retrieve the relevant data. The data updates
(including addition, deletion and updating an existing file) are almost identical to the data upload
workflow.

Note we will present specific details on private ledger data access in Section 4.6. In the next sub-
sections, we will give a step-by-step description about the operation flow of the dynamic search-
able symmetric encryption in ASSURED framework.

Captured Security Requirements: DLT-SCT-03, DLT-SCT-05, DLT-SCT-07, DLT-SCT-30, DLT-
SCT-52, DLT-SCT-55, DLT-DEC-06.

4.5.1 Updates on the Public Ledger

Due to tamper proof feature and the intrinsic design of the blockchain, direct update on previous
settled blocks on the ledger is unlikely possible. One cannot directly modify the data stored on the
ledger just as a real-world database does. However, we can keep putting updated contents as a
new copy and then put this new copy into the new block. Finally, we make a statement/declaration
(or a similar approach) that the old copy on the ledger is invalid. In this section, every time we refer
to updating the relevant data on the ledger, we mean updating the data in the above approach.

Captured Security Requirements: DLT-SCT-50, DLT-SCT-54.

ASSURED D4.3 PU Page 31 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

4.5.2 Building the Index Structure

Now we consider how to upload data for the first time and build the data related to the searchable
function. The main flow of operations is as follows.

1. The data to be uploaded is transmitted from a PeerB to the SCB. The data mainly includes
the attestation identifier (attID), the corresponding attestation result data (resultData), and
the corresponding encrypted attestation raw data using an ABE scheme (ABE.Enc(rawData))
(see Section 4.4).

2. The SCB sends the encrypted attestation raw data ABE.Enc(rawData) to the ASSURED
data storage engine which stores them on the engine. For each attestation identifier attID,
the SCB gets the corresponding location pointer (ptr) from the storage engine where the
encrypted attestation raw results are stored.

3. The SCB calculates, for each attestation identifier attID, the hash hashV of the concate-
nation of the following data: the attestation identifier attID, the corresponding encrypted
attestation raw data ABE.Enc(rawData), and the location pointer ptr to the corresponding
encrypted attestation raw data stored in the ASSURED Data Storage Engine.

4. The SCB sends the following data (quadruples) to the PeerB: the attestation identifier
attID, the corresponding attestation result data resultData, the (signed by the SCB) location
pointer ptr to the corresponding encrypted attestation raw data stored in the ASSURED
Data Storage Engine, and the hash value hashV.

5. The PeerB writes the received data to the private ledger.

6. The SCB organizes the attestation result data (associated with their location pointers ptr’s)
according to some certain categories that will serve as search keywords, such as by device
ID, date and time of the event, type of event, success or failure of event, etc. The SCB
runs the Setup phase of the DSSE scheme described in Section 4.3.2 to set up the key-
words universe W , public parameters and corresponding keys K ← DSSE.Gen(1λ). The
SCB treats the location pointer (ptr) as the file f , and establishes an inverted index-based
relationship as described in Section 4.3 between the keywords and ptr’s. Note that here
the keywords universe should include the keywords that may appear in the future.
For example, in the implementation stage, we may use the whole English dictionary to form
the keywords universe, so that each English word could be used as a search keyword, e.g.,
Monday, Europe, etc.

7. The SCB runs the Building the database phase (DSSE.Enc) of the DSSE scheme de-
scribed in Section 4.3.2 to obtain the encrypted index and a sequence of ciphertexts (γ, c)←
DSSE.Enc(K,

−→
ptr).

8. The SCB sends the encrypted index γ, the sequence of ciphertext-hash pairs (encrypted
location pointer and the hash value corresponding to the same attID) (ci, hashVi)’s to the
PeerA, and the PeerA writes them to the public ledger.

9. The SCB sends the keywords dictionary DictW to the PeerA. The PeerA writes them to the
public ledger.

ASSURED D4.3 PU Page 32 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Captured Security Requirements: DLT-SCT-03, DLT-SCT-05, DLT-SCT-08, DLT-SCT-13, DLT-
SCT-14, DLT-SCT-17, DLT-SCT-30, DLT-SCT-34, DLT-SCT-35, DLT-SCT-36, DLT-SCT-38, DLT-
SCT-39, DLT-SCT-40/DLT-SCT-41, DLT-SCT-45, DLT-SCT-46, DLT-SCT-55, DLT-DEC-06, DLT-SHA-
14.

4.5.3 Keyword (Fuzzy) Search

When a search query is needed, the process is initiated by an external party (EP) who wants to
perform the search function. Here we only consider the search via a keyword on the public ledger,
which we call fuzzy search. The search via a concrete attestation identifier, called concrete
search, will be discussed in more details in Section 4.6. There, we will also consider the search
requests from an internal party. The main flow of operations is described as follows.

1. The EP initiates an access request to the public ledger to the administrator of the public
ledger.

2. The administrator of the public ledger enforces an ABAC to authenticate whether the EP
has the matching attributes. If the EP has the matching attributes, go to Step 3. If not, abort
and return ⊥ (reject).

3. The EP requests the PeerA to access the keywords dictionary DictW on the public ledger
and retrieves the interesting keywords.

4. The EP sends the keywords to the SCB.

5. For each keyword w sent by the EP, the SCB runs the search token generation algorithm
(DSSE.SrchToken) of the Keyword search phase in the DSSE scheme described in Section
4.3.2 to generate a search token τs ← DSSE.SrchToken(K,w).

6. The SCB sends the search tokens τs’s to the PeerA.

7. For each search token τs sent by the SCB, the PeerA performs the keyword search al-
gorithm DSSE.Search on the public ledger to obtain a sequence of ciphertexts (encrypted
location pointers) {ci}i∈Iw ← DSSE.Search(γ, τs), and sends them back to the SCB.

8. The SCB computes the intersection or union {ci}i∈I of all returned ciphertext sets (depend-
ing on the choice of EP).

9. The SCB performs the File decryption phase (DSSE.Dec) of the DSSE scheme described
in Section 4.3.2 to output the decrypted files {ptri}i∈I ← DSSE.Dec(K, {ci}i∈I), signs and
sends them back to the EP.

10. The EP sends the (signed) location pointers {ptri}i∈I to the administrator of the ASSURED
Data Storage Engine and requests retrieval of the (encrypted) attestation raw data.

11. The administrator of the ASSURED Data Storage Engine verifies whether the location point-
ers are signed by the SCB. If true, the administrator (maybe need to convert the pseudo-
pointers to the corresponding real location pointers on the data store engine first) returns
the (encrypted) attestation raw data {ABE.Enc(rawData)}ptri stored at the location (pseudo-
) pointers {ptri}i∈I in the ASSURED Data Storage Engine. If not, return ⊥ (reject).

ASSURED D4.3 PU Page 33 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Note that the attestation raw data stored at the corresponding location pointers in the ASSURED
Data Storage Engine is encrypted using an ABE scheme. Only the requesting entity who has the
matching attributes can decrypt the key (with help of its TPM) and further decrypt the contents in
the key-policy ABE setting.

Captured Security Requirements: DLT-SCT-03, DLT-SCT-05, DLT-SCT-08, DLT-SCT-21, DLT-
SCT-22, DLT-SCT-24, DLT-SCT-25, DLT-SCT-30, DLT-SCT-34, DLT-SCT-35, DLT-SCT-36, DLT-
SCT-38, DLT-SCT-39, DLT-SCT-40/DLT-SCT-41, DLT-SCT-45, DLT-SCT-46, DLT-SCT-47, DLT-SCT-
55, DLT-DEC-06, DLT-SHA-14.

4.5.4 File Addition

We proceed to describe the operation flow of adding a new attestation raw data file. If multiple
files are needed to be added, we will run the file addition flow for each file per round. The process
is initiated by a data subject who creates and collects the data and chooses to perform the data
addition function. The main flow of operations is quite similar to that of building the database.

1. The data to be added is transmitted from a PeerB to the SCB. The data mainly includes the
attestation identifier (attID), the corresponding attestation result data (resultData), and the
corresponding encrypted attestation raw data using an ABE scheme (ABE.Enc(rawData)).

2. The SCB sends the encrypted attestation raw data ABE.Enc(rawData) to the ASSURED
data storage engine. The SCB obtains the corresponding pointer (ptr) from the engine
where the encrypted attestation raw data are stored.

3. The SCB calculates the hash value hashV of the concatenation of the following data: the at-
testation identifier attID, the corresponding encrypted attestation raw data ABE.Enc(rawData),
and the pointer ptr to the corresponding encrypted attestation raw data stored in the engine.

4. The SCB sends the following data (quadruple) to the PeerB: the attestation identifier attID,
the corresponding attestation result data resultData, the (signed by the SCB) pointer ptr,
and the hash value hashV. We note that the PeerB has already known the attestation
results and the attestation ID. Without loss of generality, we say that the above quadruple
is sent to the peer.

5. The PeerB writes the received data (i.e. the quadruple) to the private ledger.

6. The SCB organizes the attestation result data (associated with its location pointer ptr) ac-
cording to the keywords universe W . The SCB runs the token addition algorithm DSSE.AddToken
of the File addition phase in the DSSE scheme described in Section 4.3.2 to generate an
addition token and the encrypted location pointer (ϕa, cptr)← DSSE.AddToken(K, ptr). The
SCB then sends τa := (ϕa, (cptr, hashV)) to the PeerA.

7. The PeerA runs the File addition algorithm (DSSE.Add) to update the index and encrypted
location pointer (along with the associated hash value) on the public ledger, i.e. running
(γ′, c′)← DSSE.Add(γ, c, τa).

File update. When updating an existing file, we can treat this case as adding a completely new
file.

ASSURED D4.3 PU Page 34 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Captured Security Requirements: DLT-SCT-03, DLT-SCT-05, DLT-SCT-08, DLT-SCT-13, DLT-
SCT-14, DLT-SCT-17, DLT-SCT-30, DLT-SCT-34, DLT-SCT-35, DLT-SCT-36, DLT-SCT-38, DLT-
SCT-39, DLT-SCT-40/DLT-SCT-41, DLT-SCT-45, DLT-SCT-46, DLT-SCT-55, DLT-DEC-06, DLT-SHA-
14.

4.5.5 File Deletion

Finally, we describe the flow of deleting a stored file. If multiple files are requested to be deleted,
we will similarly run the file deletion for each file per time. The process is initiated by a data
subject who owns the data and wants to perform the data deletion function. The main flow of
operations is illustrated as follows.

1. The data deletion request is sent by a Peer (either PeerA or PeerB) to the SCB. This request
mainly includes: attID, the optional (resultData), and the optional ABE.Enc(rawData). We
note that deletion so far is set as a precise deletion (i.e. cannot support fuzzy deletion). In
this case, the unique identifier, attID, is the crucial element we require; while other items
could be optional.

2. With the attID, the PeerB can easily retrieve the corresponding back to the SCB.

3. Given ptr, the SCB runs the algorithm DSSE.DelToken of the File deletion phase in the
DSSE scheme described in Section 4.3.2 to generate the deletion tokens and file identifier
(τ1, τ2, τ3, id(ptr)) ← DSSE.DelToken(K, ptr). The SCB then sends τd = (τ1, τ2, τ3, id(ptr))
to the PeerA.

4. The PeerA runs the File deletion algorithm (DSSE.Del) to “delete” the index and encrypted
location pointers (along with the associated hash values) on the public ledger (γ′, c′) ←
DSSE.Del(γ, c, τd). We state that here we enable the peer to run the deletion algorithm
to reform the index structure and the encrypted pointers in the algorithm level. However,
due to the tamper-proof feature of the ledger, the previously stored data on the ledger is
impossible to easily deleted. Thus, after running the deletion algorithm, the PeerA must
announce an additional piece of data on the ledger so as to declare a “null” (or invalid)
value to the corresponding data block, e.g., the transaction ith (with an encrypted pointer)
in jth is “null”, and this piece of data could be wrapped as a new transaction to be stored
on a new block.

5. The SCB also requests the data storage engine to delete the encrypted attestation raw data
stored at the location (pseudo-) pointer ptr as well as terminating the use of the pointer.

6. As for the private ledger, the SCB requests the PeerB to make a similar statement/declaration
that the relative item (the pointer in a specific transaction) corresponding to the attestation
identifier attID is invalid or null.

Captured Security Requirements: DLT-SCT-03, DLT-SCT-05, DLT-SCT-08, DLT-SCT-13, DLT-
SCT-14, DLT-SCT-17, DLT-SCT-30, DLT-SCT-34, DLT-SCT-35, DLT-SCT-36, DLT-SCT-38, DLT-
SCT-39, DLT-SCT-40/DLT-SCT-41, DLT-SCT-45, DLT-SCT-46, DLT-SCT-55, DLT-DEC-06, DLT-SHA-
14.

ASSURED D4.3 PU Page 35 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Figure 4.2: General Workflow of Secure Data Storage and Search over the Private Ledger

4.6 Private Ledger Data Access

We have described in Section 4.5.3 the searches via keywords on the public ledger, the so-called
fuzzy search. Recall that the attestation identifiers and (signed) location pointers are also stored
on the private ledger without encrypting, which means if the requesting party has the permission
to directly access the private ledger, the requesting party can directly perform a concrete search
on the private ledger and obtain the interesting location pointers without having to run the SSE
protocol. This search over the private ledger is different from that of the fuzzy search (via key-
words) over the public ledger. Thus, in this section, we will describe the concrete searches on
the private ledger in case the requesting party has the permission to directly access the private
ledger.

Here we also consider the internal party such as the device who submits/outsources the data and
(of course) has the the permission to directly access the private ledger. The access to the private
ledger data is depicted in Figure 4.2. We summarize it as follows.

Store data on the private ledger. Firstly, recall that the data is submitted to a PeerB by the
internal parties (e.g. devices). The data is a tuple of (attID, resultData, and ABE.Enc(rawData)).
We note that this is different from the case of public ledger storage. In this case, the data could
directly come from the internal parties, devices.

Secondly, similar to the case of private ledger data storage, the SCB gets the (pseudo-) pointer
(ptr) from the data storage engine. Then, the SCB calculates, for each attestation identifier attID,
the hash hashV of the concatenation of the following data: the attestation identifier attID, the
corresponding encrypted attestation raw data ABE.Enc(rawData), and the location pointer ptr to
the corresponding encrypted attestation raw data stored in the ASSURED Data Storage Engine.

Thirdly, the SCB sends the following data (quadruples) to the PeerB: the attestation identifier
attID, the corresponding attestation result data resultData, the (signed by the SCB) location

ASSURED D4.3 PU Page 36 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

pointer ptr to the corresponding encrypted attestation raw data stored in the ASSURED Data
Storage Engine, and the hash value hashV.

Finally, the PeerB writes the received data to the private ledger. Concretely, the information stored
on the private ledger is a list of quadruples: {attID, resultData, ptr, hashV}i.
Search request by an internal party. As the internal party (e.g., devices) submitting the data,
it knows the exact attestation identifier with the access permission over the private ledger. This
internal party can send the attestation identifiers to the PeerB, so that the peer searches the data
on the ledger and returns the related data (including the plaintext pointers). Then the internal
party sends the (pseudo-) pointers to the ASSURED data storage engine and requests to retrieve
data. The data storage engine verifies the signatures and returns the encrypted attestation raw
data ABE.Enc(rawData) if passed. Finally, the internal party decrypts the returned data using its
own TPM and obtains the original attestation raw data, because the data is actually encrypted
and submitted by this internal party.

Search request by an external party. Similarly, when the external party knows the exact attes-
tation identifier, then he/she initiates an access request to the private ledger to the administrator
of the private ledger via ABAC. If passed, the follow-up workflow will be almost the same as that
of internal party except for the last step that only if the external party has the matching attributes
he/she can decrypt the key and thus decrypt the contents in the key-policy ABE setting.

Captured Security Requirements: DLT-SCT-03, DLT-SCT-05, DLT-SCT-08, DLT-SCT-21, DLT-
SCT-22, DLT-SCT-24, DLT-SCT-25, DLT-SCT-34, DLT-SCT-35, DLT-SCT-40/DLT-SCT-41, DLT-SCT-
55, DLT-SHA-14.

4.7 Access via the ABAC

In the ASSURED blockchain network, we use ABAC mechanism to maintain access control. This
control is supported by the blockchain peers (with given users’ credentials) and the SCB (with
help of smart contracts based on access policies). We say that the access is requested by both
internal and external parties, e.g., devices and external auditor; and the access to the private
and public ledgers are considered. Recall that any parties which would like to register to any
ledger should send request to the SCB, so that the SCB can use the access policy based smart
contract to check if the parties are permitted to access to the ledger based on their attributes. If
the check is valid, the SCB will refer them to the blockchain CA. They will be granted credentials
by the blockchain CA. On a credential, we define the access attributes which are granted to a
blockchain user. With this credential, this user is allowed to access to the blockchain network.
And further this credential decides if this user is able to enter the public or the private channel.
As for the internal parties, they are usually granted the credentials that enable them to join the
private channel, in this case, they can easily perform read and write requests to the peers on the
private ledger. If the credentials the users have do not match the corresponding access rights,
the peers can easily turn down the requests. As for the external parties, they are initially given
the access to the public channel. And similarly, the public ledger peers can handle the parties’
requests on the ledger via their credentials. The parties can also execute some fuzzy search,
via the DSSE, on the public ledger. Specifically, an external party, after knowing the keyword
dictionary from the public ledger, issues one or some keywords to the SCB. The SCB will first
check if this party is allowed to access to the attestation raw data. This can be done by calling
the smart contract method for attribute verification. If the verification is valid, then the SCB will
proceed to search tokens generation, and later, decrypt the pointers to the party. Here, the SCB

ASSURED D4.3 PU Page 37 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

will make a digital signature on the pointers, so that the data storage engine can be notified that
this is a valid search pointers issued by the SCB. Any issuing pointers without the SCB signature,
the data storage engine will ignore. In addition to the fuzzy search, the external party is also
allowed to issue a concrete search directly over the private ledger. To this end, the party should
directly send the concrete request to the SCB. The SCB will run the smart contract to verify its
attributes. If valid, the party will be handled by the blockchain CA to add it into the private channel.
In this way, the party can exactly do search queries like the internal parties.

Captured Security Requirements: DLT-SCT-21, DLT-SCT-22, DLT-SCT-24, DLT-SCT-25.

ASSURED D4.3 PU Page 38 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Chapter 5

ASSURED Data Storage Engine

As defined in the ASSURED DLT architecture, the overall deployment of the ASSURED ecosys-
tem includes a secure data storage facility that is used in collaboration with the ASSURED DLT
ledger to store data that is essential for the overall operation of the concept. This engine is de-
ployed and managed by an organisation that is operating ASSURED and as depicted in the high
level architecture presented in Deliverable D4.1 [12]. There is no common cloud-based storage
engine to facilitate all ASSURED deployments, but rather each organisation is responsible for its
own data lake.

This chapter provides the details about which data will become available over the Data Storage
Engine, and about the services the Engine will provide as well as the deployment options of the
Engine.

5.1 Data Storage Engine and relevance to ASSURED Opera-
tions

The overall Data Storage Engine that will be used in ASSURED consists of two major parts;
the database system that is used for storing the attestation raw data (already encrypted using
ABE), and an indexing service that will be used in conjunction with the database to allow for faster
access and querying over the encrypted data stored in the database.

As identified in the overall ASSURED blockchain architecture, the main scope of the Data Storage
Engine is to hold data relevant to attestation raw data in an encrypted manner, so that these data
are not stored on the ledgers for both performance issues as well as for facilitating data exchange
with other stakeholders. In this context, the database will not hold attestation raw data that can
be read by stakeholders, but will rather include encrypted blobs of information that will be able to
be located using pointers stored on the ledger, and be decrypted by the different entities using
ABE decryption. In any case, access to this Data Storage Engine will be only provided through
the SCB which will be the component that will be responsible to write and read data to/from the
Data Storage Engine. It is the component that will store the attestation results on the database
(and provide back a pointer to each ledger), and also will be able to interpret the different pointers
coming from the ledgers (either encrypted or decrypted) and retrieve the according information
from the database.

As the main information to be stored on this database is that of attestation reports, the selection

ASSURED D4.3 PU Page 39 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

for the database technology is that of a noSQL1 and in this direction MongoDB2 has been se-
lected, however, any other similar database technology can be selected, as this is a facility that
can operate as plug & play in the sense that no complicated or special database operations are
to be requested from the storage engine. The main information to be stored in the database,
includes documents that have a very simple format which can be all stored under a Single Col-
lection and those are of the following format:

{

_uid: "5099803df3f4948bd2f98391",

update_record_timestamp: (Timestamp ""),

entry_record_timestamp: "20211231235959",,

attestation_timestamp: "20211231235858",

encrypted_attestation_raw_data: "chiphertext"

}

• The _uid is an auto-generated identifier for each document, which will act as the pointer which
will be returned to the SCB (alongside with the actual location of the database databasepath

where this is stored (in order to facilitate the distributed deployment options as described in Sec-
tion 5.3) to note the exact location in the database of the ABE-encrypted attestation raw data.

• The update_record_timestamp is the auto-generated timestamp of the update/entry of the
document in the database which is the exact time where an entry has been included/updated in
the database.

• The entry_record_timestamp is the timestamp of the entry of the document in the database
as taken out of the initial call made by the SCB to the database. This indicated the first time
a document has been written into the database and is not updated if the document is updated
(unlike the “update_record_timestamp” field).

• The attestation_timestamp is the timestamp relevant to when the attestation has been ex-
ecuted, and is forwarded by the SCB to the database, alongside with the encrypted attestation
data blob (see below).

• The encrypted_attestation_raw_data is the encrypted blob of the whole attestation raw
data, which has been already encrypted by a device using ABE based on the keys it posses in
its TPM Wallet. This raw data file is generated at the device level, and after being encrypted is
provided to the SCB which in turn forwards it to the Secure Data Storage Engine.

Regarding the indexing service, this will be based on the ElasticSearch3 technology in order to
be able to index the MongoDB towards allowing the SCB to get responses faster to the queries it
will perform over the databases. As such, an index of the whole database will be generated and
updated constantly, in order to be able to overcome certain read-access performance pain points
that may exist due to the nature of the noSQL approach.

5.2 Securing the Data Storage Engine

The Data Storage Engine of the overall infrastructure does contain only encrypted data (attes-
tation raw data), which can be decrypted only by entities that posses the correct attributes to

1https://www.mongodb.com/nosql-explained
2https://www.mongodb.com/
3https://www.elastic.co/what-is/elasticsearch

ASSURED D4.3 PU Page 40 of 51

https://www.mongodb.com/nosql-explained
https://www.mongodb.com/
https://www.elastic.co/what-is/elasticsearch

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

engage with the ABE scheme applied, however, two more steps have been taken in order to
strengthen the security of the overall data repository.

Firstly, access to the Data Storage Engine, as indicated in deliverable D4.1 [12] is granted only
to the SCB, who is the main responsible for writing, updating and reading documents from the
database. As such, only the SCB and (and some other entities which are provided with specific
access rights) will be allowed to access the database and all requests will be done through the
SCB (e.g., in the way of requesting the pointers). Also as identified in deliverable D4.1 [12],
the SCB will not serve external parties with the real pointers to the database (the “_uid” field
identified in Section 5.1, but will instead auto-generate a pseudo-pointer (a 16-character string)
which will be the one to be provided to the external stakeholders. This pseudo-pointer will be
created at real-time within the SCB, and will be stored temporarily in a table holding the different
pseudo-pointers and the real pointers (provided as a combination of “databasepath” and “_uid”)
to the exact location of each entry. This record will have a short “t=time-to-leave” and as such
any pseudo-pointer generated by the SCB will become obsolete after a certain period of time
“t” measured in seconds. And the data storage engine will be thus protected from rogue calls
by malicious entities so that they have to guess the pseudo-pointers (and will be also put on a
connection blacklist by the SCB in case they continuously request non-existent pseudo-pointers).

As such, the SCB will keep a list of these values, as shown in the next table.

timestamp pseudo-pointer timetoleave databasepath uid

20220212232358 f18af9ae92eb11ec 1200 dbhostA 176BF052-4ECB-4E1D-B48F-F3523F7F277F

20220212232359 b90ew42acc12es00 1200 dbhostB 04054007-0203-0001-0F0E-0D0C0B0A0980

20220212232458 f18afd1492eb11a3 1200 dbhostA 00010203-0405-4007-8009-0A0B0C0D0E0F

Secondly, the Data Storage Engine will be also continuously checked by the SCB relevant to its
integrity in order to be able to guarantee that no changes have been performed by any other
entity on the data it holds. In order to do this, a snapshot of the engine infrastructure will be taken
and attested resulting in an integrity check hash, which will be checked by the SCB prior to any
interaction in order to check whether the actual engine is in its correct operating state, or some
unauthorised changes have been applied to it.

5.3 Storage Engine Deployment Options

The Storage Engine is envisaged to operate in parallel to the DLT network and support it by
offering the possibility to various entities to utilise this storage facility rather than putting data on
the ledger. The Storage Engine is conceptually designed as a single deployment that covers
an organisation where ASSURED is deployed, as mentioned above. However, this does not
necessarily mean that the Storage Engine is a single infrastructure within an organisation, as it
could be that various deployments can be used within the same ASSURED ecosystem. In fact,
it is the utilisation of pointers in the ledger and their process by the SCB that allows for deploying
multiple instances of the same Storage Engine in different settings within a single organisation, to
facilitate the operation of the overall ASSURED system. This can be done for scalability reasons,
while different department may choose to utilise their own infrastructure rather than moving data
to other locations, even if those are of the same stakeholder, improving also data resilience in
this way. As such, the deployments can be performed at the level of departments, or at any
other conceptual division of the operations to be supported by the ASSURED framework within
an organisation.

ASSURED D4.3 PU Page 41 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Following this approach, distributed data operations are supported in ASSURED as well, to en-
sure the improved stability of the overall network and refrain from having single point of failures
when it comes to data access between organisations, placing the SCB in the center of atten-
tion as it is an intelligence proxy that is able to discover and query the different engines, whether
these are operating within its organisation boundaries, or they are deployed elsewhere, belonging
to other parties.

Nevertheless, ASSURED can operate having either a centralised storage engine deployment (as
initially defined in the architecture), or by having distributed deployments of the same Storage
Engine instance (as described above), and it is up to the use cases to decide which deployment
scenario is more efficient, performant and cost-effective for their operation needs, considering
also their available infrastructures and resources.

ASSURED D4.3 PU Page 42 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Chapter 6

Conclusion

This section presents conclusions over the deliverable and summarizes the main findings. Fol-
lowing the instructions output by D4.1 [12] and D1.4 [13], the scope of the deliverable focus on the
use of SE this cryptographic primitive to provide secure and privacy-preserving data search and
sharing for external parties and investigate how to integrate with ABAC to perform data access
for internal parties. And meanwhile, the integration with ABAC, SCB and data storage engine
is introduced to capture secure data storage and access. D4.3 delivers the detailed for the first
stage development on data storage and access, and further reflects the design on the security
and privacy requirements defined in D1.4 [13].

In summary, deliverable D4.3 introduces the following core data sharing components:

• DSSE: To support the secure data search and sharing for external parties in the ASSURED
blockchain framework, Deliverable D4.3 presents a secure and dynamic searchable mech-
anism. In this mechanism, the SCB is allowed to construct searchable index structure, and
public the keyword dictionary on the public ledger, so that external parties can use the key-
words to issue search request to the SCB. The SCB is able to construct a search token
for the public ledger peer(s) to perform a secure data search and return the corresponding
requested file(s). This first stage DSSE development captures update operations on public
ledger, index structure construction, keyword search and file addition/deletion stages. The
current design can surely guarantee that: (1) all data stored on the public ledger are en-
crypted so as to protect attestation data confidentiality; (2) even the public ledger peer(s)
will not have any idea on what data the requesters are querying, in this case the search pri-
vacy is maintained; (3) hash value of data storage engine pieces is stored on the ledger, so
as to protect the integrity of the off-chain storage copy. In the DSSE, the interaction among
the SCB, peer(s), external parties and the data storage engine are described in detail.

• Data Storage Engine: This engine is used to store the off-chain ABE encrypted attestation
raw data. The design of the engine must have a tight connection with the public ledger,
which relies on the pointer. The first stage of the engine description is presented in this
deliverable. How the connection with the public ledger is built and some related secure ap-
proaches may be used to protect storage location of those encrypted data are considered.

• Other Aspects: This deliverable considers how the internal parties can access those data
stored on the private ledger. This mainly depends on the ABAC mechanism that may check
the credentials of the internal parties and their correspond read and write rights.

Beyond the development of the above components, the detailed Hyperledger Fabric membership
service provider mechanism supporting ABAC, and the optimization on the DSSE and detailed

ASSURED D4.3 PU Page 43 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

implementation of the SE and its interactions of other components will be further considered in
the following deliverable D4.4. The integration of the proposed and implemented mechanisms
with other ASSURED technical parts will be considered in the WP5 and WP6.

ASSURED D4.3 PU Page 44 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

List of Abbreviations

Abbreviation Translation
AE Authenticated Encryption
AES Advanced Encryption Standard
ABAC Attribute-Based Access Control
ABE Attribute-Based Encryption
AK Attestation Key
CA Certification Authority
CBC Cipher Block Chaining
CCA Chosen-Ciphertext Attack
CFA Control-Flow Attestation
CIV Configuration Integrity Verification
CKA Chosen Keyword Attack
CPA Chosen-Plaintext Attack
CSR Certificate Signing Request
CTR Counter
DAA Direct Anonymous Attestation
DLT Distributed Ledger technology
DSSE Dynamic Searchable Symmetric Encryption
EA Enhanced Authorization
EK Endorsement Key
EP External Party
GSS Ground Station Server
HMAC Hash-based Message Authentication Code
IBE Identity-Based Encryption
KGA Keyword Guessing Attack
MAC Message Authentication Code
MSPL Medium-level Security Policy Language (MSPL)
NMS Network Management System
Privacy CA Privacy Certification Authority
Prv Prover
PCR Platform Configuration Register
PLC Program Logic Controller
PRF Pseudorandom Function
RA Risk Assessment
RAT Remote Attestation
SCB Security Context Broker
SE Searchable Encryption
SoS Systems of Systems
SSE Searchable Symmetric Encryption
SSR Secure Server Router
S-ZTP Secure Zero Touch provisioning
TC Trusted Component
TLS Transport Layer Security
TPM Trusted Platform Module

ASSURED D4.3 PU Page 45 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

Abbreviation Translation
Vf Virtual Function
VM Virtual Machine
Vrf Verifier
WP Work Package
ZTP Zero Touch Provisioning

ASSURED D4.3 PU Page 46 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

References

[1] Ghous Amjad, Seny Kamara, and Tarik Moataz. Forward and backward private searchable
encryption with SGX. In Proceedings of the 12th European Workshop on Systems Security,
EuroSec@EuroSys 2019, Dresden, Germany, March 25, 2019, pages 4:1–4:6. ACM, 2019.

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message au-
thentication. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 1–15. Springer,
1996.

[3] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings,
volume 3027 of Lecture Notes in Computer Science, pages 506–522. Springer, 2004.

[4] Raphael Bost.
∑

oφoς : Forward secure searchable encryption. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 1143–1154. ACM, 2016.

[5] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private search-
able encryption from constrained cryptographic primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, Oc-
tober 30 - November 03, 2017, pages 1465–1482. ACM, 2017.

[6] Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee. Off-line keyword
guessing attacks on recent keyword search schemes over encrypted data. In Willem Jonker
and Milan Petkovic, editors, Secure Data Management, Third VLDB Workshop, SDM 2006,
Seoul, Korea, September 10-11, 2006, Proceedings, volume 4165 of Lecture Notes in Com-
puter Science, pages 75–83. Springer, 2006.

[7] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-large databases:
Data structures and implementation. In 21st Annual Network and Distributed System Se-
curity Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The
Internet Society, 2014.

[8] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. Highly-scalable searchable symmetric encryption with support for boolean

ASSURED D4.3 PU Page 47 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

queries. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science, pages 353–373.
Springer, 2013.

[9] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou, and Rasool
Jalili. New constructions for forward and backward private symmetric searchable encryption.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1038–1055. ACM, 2018.

[10] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on
remote encrypted data. In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors,
Applied Cryptography and Network Security, Third International Conference, ACNS 2005,
New York, NY, USA, June 7-10, 2005, Proceedings, volume 3531 of Lecture Notes in Com-
puter Science, pages 442–455, 2005.

[11] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In
Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International Con-
ference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science,
pages 577–594. Springer, 2010.

[12] The ASSURED Consortium. Assured blockchain architecture. Deliverable D4.1, November
2021.

[13] The ASSURED Consortium. Assured blockchain architecture. Deliverable D1.4, November
2021.

[14] The ASSURED Consortium. Assured reference architecture. Deliverable D1.2, May 2021.

[15] The ASSURED Consortium. Assured use cases & security requirements. Deliverable D1.1,
February 2021.

[16] The ASSURED Consortium. Policy modelling & cybersecurity, privacy and trust constraints.
Deliverable D2.2, November 2021.

[17] The ASSURED Consortium. Assured secure distributed ledger maintenance & data man-
agement. Deliverable D4.2, February 2022.

[18] The ASSURED Consortium. Assured tc-based functionalities. Deliverable D4.4, February
2022.

[19] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In Ari Juels, Rebecca N. Wright,
and Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006, Alexandria, VA, USA, October 30 -
November 3, 2006, pages 79–88. ACM, 2006.

[20] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: Improved definitions and efficient constructions. J. Comput. Secur., 19(5):895–
934, 2011.

ASSURED D4.3 PU Page 48 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

[21] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Charalampos Pa-
pamanthou. Dynamic searchable encryption with small client storage. In 27th Annual Net-
work and Distributed System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

[22] Ge Gao, Lei Wu, and Yunxue Yan. A secure storage scheme with key-updating in hybrid
cloud. Int. J. High Perform. Comput. Netw., 13(2):175–183, 2019.

[23] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM: efficient
oblivious RAM in two rounds with applications to searchable encryption. In Matthew Rob-
shaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part III, volume 9816 of Lecture Notes in Computer Science, pages 563–592.
Springer, 2016.

[24] Eu-Jin Goh. Secure indexes. IACR Cryptol. ePrint Arch., page 216, 2003.

[25] Kun He, Jing Chen, Qinxi Zhou, Ruiying Du, and Yang Xiang. Secure dynamic searchable
symmetric encryption with constant client storage cost. IEEE Trans. Inf. Forensics Secur.,
16:1538–1549, 2021.

[26] Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo. Practical and secure dynamic search-
able encryption via oblivious access on distributed data structure. In Stephen Schwab,
William K. Robertson, and Davide Balzarotti, editors, Proceedings of the 32nd Annual Con-
ference on Computer Security Applications, ACSAC 2016, Los Angeles, CA, USA, Decem-
ber 5-9, 2016, pages 302–313. ACM, 2016.

[27] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In 19th Annual Network and
Distributed System Security Symposium, NDSS 2012, San Diego, California, USA, February
5-8, 2012. The Internet Society, 2012.

[28] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Pro-
ceedings, Part III, volume 10212 of Lecture Notes in Computer Science, pages 94–124,
2017.

[29] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable symmetric
encryption. In Ahmad-Reza Sadeghi, editor, Financial Cryptography and Data Security -
17th International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers, volume 7859 of Lecture Notes in Computer Science, pages 258–274. Springer,
2013.

[30] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable sym-
metric encryption. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Con-
ference on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October
16-18, 2012, pages 965–976. ACM, 2012.

ASSURED D4.3 PU Page 49 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

[31] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong Park, and Woo-Hwan Kim. Forward
secure dynamic searchable symmetric encryption with efficient updates. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017, pages 1449–1463. ACM, 2017.

[32] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric encryption. In
Angelos D. Keromytis, editor, Financial Cryptography and Data Security - 16th International
Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected
Papers, volume 7397 of Lecture Notes in Computer Science, pages 285–298. Springer,
2012.

[33] Kaoru Kurosawa and Yasuhiro Ohtaki. How to update documents verifiably in searchable
symmetric encryption. In Michel Abdalla, Cristina Nita-Rotaru, and Ricardo Dahab, edi-
tors, Cryptology and Network Security - 12th International Conference, CANS 2013, Paraty,
Brazil, November 20-22. 2013. Proceedings, volume 8257 of Lecture Notes in Computer
Science, pages 309–328. Springer, 2013.

[34] Jin Li, Yanyu Huang, Yu Wei, Siyi Lv, Zheli Liu, Changyu Dong, and Wenjing Lou. Searchable
symmetric encryption with forward search privacy. IEEE Trans. Dependable Secur. Comput.,
18(1):460–474, 2021.

[35] D Sivaganesan. A data driven trust mechanism based on blockchain in iot sensor networks
for detection and mitigation of attacks. Journal of trends in Computer Science and Smart
technology (TCSST), 3(01):59–69, 2021.

[36] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In 2000 IEEE Symposium on Security and Privacy, Berke-
ley, California, USA, May 14-17, 2000, pages 44–55. IEEE Computer Society, 2000.

[37] Xiangfu Song, Changyu Dong, Dandan Yuan, Qiuliang Xu, and Minghao Zhao. Forward pri-
vate searchable symmetric encryption with optimized I/O efficiency. IEEE Trans. Dependable
Secur. Comput., 17(5):912–927, 2020.

[38] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic searchable
encryption with small leakage. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet
Society, 2014.

[39] Shifeng Sun, Ron Steinfeld, Shangqi Lai, Xingliang Yuan, Amin Sakzad, Joseph K. Liu,
Surya Nepal, and Dawu Gu. Practical non-interactive searchable encryption with forward
and backward privacy. In 28th Annual Network and Distributed System Security Symposium,
NDSS 2021, virtually, February 21-25, 2021. The Internet Society, 2021.

[40] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo, and
Surya Nepal. Practical backward-secure searchable encryption from symmetric puncturable
encryption. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, edi-
tors, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 763–780. ACM,
2018.

ASSURED D4.3 PU Page 50 of 51

D4.3 - ASSURED Blockchain-based Control Services and Crypto Functions for Decentralized
Data Storage, Sharing and Access Control

[41] Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter H. Hartel, and Willem Jonker.
Computationally efficient searchable symmetric encryption. In Willem Jonker and Milan
Petkovic, editors, Secure Data Management, 7th VLDB Workshop, SDM 2010, Singapore,
September 17, 2010. Proceedings, volume 6358 of Lecture Notes in Computer Science,
pages 87–100. Springer, 2010.

[42] Jiyi Wu, Lingdi Ping, Xiaoping Ge, Ya Wang, and Jianqing Fu. Cloud storage as the infras-
tructure of cloud computing. In 2010 International Conference on Intelligent Computing and
Cognitive Informatics, pages 380–383. IEEE, 2010.

[43] Xuanxia Yao, Zhi Chen, and Ye Tian. A lightweight attribute-based encryption scheme for
the internet of things. Future Gener. Comput. Syst., 49:104–112, 2015.

[44] Wei-Chuen Yau, Swee-Huay Heng, and Bok-Min Goi. Off-line keyword guessing attacks on
recent public key encryption with keyword search schemes. In Chunming Rong, Martin Gilje
Jaatun, Frode Eika Sandnes, Laurence Tianruo Yang, and Jianhua Ma, editors, Autonomic
and Trusted Computing, 5th International Conference, ATC 2008, Oslo, Norway, June 23-25,
2008, Proceedings, volume 5060 of Lecture Notes in Computer Science, pages 100–105.
Springer, 2008.

[45] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong
to us: The power of file-injection attacks on searchable encryption. In Thorsten Holz and
Stefan Savage, editors, 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016, pages 707–720. USENIX Association, 2016.

[46] Minghao Zhao, Han Jiang, Zhen Li, Qiuliang Xu, Hao Wang, and Shaojing Li. An ef-
ficient symmetric searchable encryption scheme for dynamic dataset in cloud computing
paradigms. Int. J. High Perform. Comput. Netw., 12(2):179–190, 2018.

ASSURED D4.3 PU Page 51 of 51

	ASSURED - D4.3-Cover
	Disclaimer
	Copyright notice

	ASSURED_D4_3
	List of Figures
	List of Tables
	Introduction
	Scope and Purpose
	Relation to other WPs and Deliverables
	Deliverable Structure

	Secure Data Management in ASSURED
	Roles of Secure Data Management in ASSURED
	Types of Data and Actors
	Security Requirement of Secure Data Management

	Cryptographic Technologies
	Symmetric Encryption
	(Pseudo-) Random Functions
	Attribute-Based Encryption
	ABE in ASSURED Framework
	ABE in Searchable Encryption

	Searchable Encryption
	Need for Searchable Encryption
	Security Guarantees
	General Model
	Searchable Symmetric Encryption
	Dynamic Searchable Symmetric Encryption

	ASSURED Initial Designed Dynamic Searchable Symmetric Encryption Scheme
	Notations
	System Model
	Dynamic Searchable Symmetric Encryption Scheme
	A High Level Description
	A Detailed Description

	Flexible Attribute-Based Encryption Interface
	DSSE Secure Data Operation
	Updates on the Public Ledger
	Building the Index Structure
	Keyword (Fuzzy) Search
	File Addition
	File Deletion

	Private Ledger Data Access
	Access via the ABAC

	ASSURED Data Storage Engine
	Data Storage Engine and relevance to ASSURED Operations
	Securing the Data Storage Engine
	Storage Engine Deployment Options

	Conclusion

