
WWW.PROJECT-ASSURED.EU

Grant Agreement No.: 952697
Call: H2020-SU-ICT-2018-2020
Topic: SU-ICT-02-2020
Type of action: RIA

D3.4: ASSURED REAL-TIME MONITORING AND
TRACING FUNCTIONALITIES

Revision: v.1.0

Work package WP 3

Task Task 3.4

Due date 28/02/2022

Deliverable lead MLNX

Version 1.0

Authors Meni Orenbach (MLNX), Ahmad Atamli (MLNX)

Reviewers Richard Mitev, Phillip Rieger (TUDA)

Thanassis Giannetsos (UBITECH)

Abstract Deliverable D3.4 focuses on the first release of the software-based Tracer designed
in ASSURED for enabling the real-time monitoring of various system properties to be
considered for attestation. More specifically, D3.4 puts forth the ASSURED device
runtime data and execution stream monitoring and introspection capabilities
necessary for tracing the control- and information-flow execution paths needed by
the runtime attestation enablers developed in WP3. Dynamic tracing functionalities
are provided, as programmable components, enabling the continuous monitoring of
kernel shared libraries, system calls, shared data and memory address space, etc.,
and the in-depth investigation of the systems’ behavior for detecting cheating
attempts or if any type of exploits to the program and data memory. This provides the
trusted anchor with the compiled control- and information-flow graphs (CFGs &
DFGs) that represent the runtime state of a remote device, against the configuration
and execution properties of safety-critical components

Keywords Trusted Computing, Dynamic Tracing, Intrusive vs. Non-Intrusive Tracing, Dynamic
Memory Acquisition

http://www.project-assured.eu/

D3.2: ASSURED Layered Attestation and Runtime Verification Enablers Design & Implementation

© 2020-2023 ASSURED Consortium

Document Revision History

Version Date Description of change List of contributors
v0.1 15.12.2021 ToC Meni Orenbach (MLNX)
v0.2 10.01.2022 SOTA analysis of the various hw- and sw-based

tracing mechanisms that exist in the literature.
Reasoning behind the design choice of
ASSURED to proceed with a urely sw-based
tracing solution (Chapter 2)

Meni Orenbach, Ahmad Atamli (MLNX)
Ilias Aliferis (UNIS)

v0.3 17.01.2022 First draft of the Tracer architecture, its
functional specifications and mode of operation
(Chapter 4)

Meni Orenbach, Ahmad Atamli (MLNX)
Richard Mitev, Philip Rieger (TUDA)
Thanassis Giannetsos (UBITECH)

v0.4 26.01.2022 Description of the instantiation and usage of the
Tracer in the context of Control-flow Attestation
(Chapter 5)

Ahmad Atamli, Meni Orenbach
(MLNX/MLNX)
Richard Mitev, Philip Rieger, Marco
Chilese (TUDA)

v0.5 29.10.2021 Description of the instantiation and usage of the
Tracer in the context of the Configuration
Integrity Verification (Chapter 6)

Meni Orenbach, Ahmad Atamli (MLNX)
Benjamin Larsen, Heini Bergsson
Debes(DTU)
Ilias Aliferis (UNIS)
Dimitris Karras (UBITECH)

v0.6 10.02.2022 Description of the interaction between the
Tracer and the ASSURED Attack Validation
component towards the acquisition of system
traces in order to identify the exact attack path
that an adversary exploited (Chapter 7)

Meni Orenbach, Ahmad Atamli (MLNX)
Karthik Shenoy Panambur (BIBA)
Thanassis Giannetsos, Dimitris
Papamartzivanos (UBITECH)

v0.7 18.02.2022 Finalization of the Tracer architecture and list of
the future plans towards the second and final
release – including also a detailed evaluation
plan for different codebase complexity (Chapter
2 and 8)

Meni Orenbach, Ahmad Atamli (MLNX)
Thanassis Giannetsos (UBITECH)

v0.9 24.02.2022 Review the document Richard Mitev, Phillip Rieger (TUDA)
Thanassis Giannetsos (UBITECH)

v1.0 28.02.2022 Finalisation of the document Meni Orenbach, Ahmad Atamli (MLNX)

Editors

Meni Orenbach (MLNX), Ahmad Atali (MLNX)

Contributors (ordered according to beneficiary numbers)

Heini Bergsson Debes, Benjamin Larsen (DTU)

Richard Mitev, Philip Rieger, Jingru Wang, Marco Chilese, David Koisser (TUDA)

Liqun Chen, Nada El Kassem (SURREY)

Ahmad Atali, Meni Onrebach (MLNX)

Dimitrs Papamartzivanos, Thanassis Giannetsos, Dimitris Karras (UBITECH)

Karthik Shenoy Panambur (BIBA)

Ilias Aliferis (UNIS)

D3.2: ASSURED Layered Attestation and Runtime Verification Enablers Design & Implementation

© 2020-2023 ASSURED Consortium

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the "Future
Proofing of ICT Trust Chains: Sustainable Operational Assurance and Verification Remote Guards
for Systems-of-Systems Security and Privacy" (ASSURED) project’s consortium under EC grant
agreement 952697 and do not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the information contained
herein.

COPYRIGHT NOTICE

© 2020 - 2023 ASSURED Consortium

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to ASSURED project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Executive Summary

The design and the documentation of the ASSURED Reference Architecture is presented in
D1.2 [9]. D1.2 depicts the identified core interfaces and components that need to be provided
towards the integration of the overall ASSURED framework. This deliverable aim is to present the
ASSURED Tracer component, which provides the backbone capability to prove the edge devices
state is secure to remote verifiers. That is achieved via the different attestation mechanisms
considered in ASSURED such that are documented in D3.2 [8].

The ASSURED Tracer is designed to securely capture all information regarding the runtime state
of each edge device deployed in ASSURED. For example, runtime information includes the up-
to-date configuration state of the device, and per-program executed control flows. The tracer
generates traces that are used by the attestation verifiers. The ASSURED risk assessment en-
gine uses this information to calculate the risk level on each device and in the entire ASSURED
ecosystem.

ASSURED ensures the trustworthiness of the generated traces by running the tracer in a Trusted
Execution Environment. This guarantees the integrity and authenticity of the received traces,
which results in the tracer being included in the overall ASSURED Trusted Computing Base.
D3.1 [6] designs the protocol for secure and authentic communication between the tracer and the
TPM-based Wallet. The latter verifies the authenticity of the traces and their signatures prior to
sending them to the verifiers.

In this deliverable, we present the algorithms to securely track control flows, configuration, and
variable values in edge devices, aiming for a negligible impact on the performance of programs
executing in edge devices. The ASSURED tracer is a software component that can be executed
on top of commodity off-the-shelf platforms.

The high-level tracing methods to be considered in the context of ASSURED are the following:

• Control flow tracing

• Configuration integrity tracing

• Attack validation program tracing

In conclusion, the overall purpose of this deliverable is to provide a reference document for the
ASSURED Tracer that will explain the underlying mechanism to support the attestation primitives
considered within WP3. The deliverable contains a detailed definition of the technical interfaces,
the security of the traces, and the tracing methods that need to be supported by the ASSURED
tracer.

ASSURED D3.4 PU Page I

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Contents

List of Figures IV

List of Tables V

1 Introduction 1
1.1 Towards Efficient Remote Attestation with Software Assisted Multi-level Execution

Tracing . 1
1.2 Scope and Purpose . 2
1.3 Relation to other WPs and Deliverables . 3
1.4 Deliverable Structure . 4

2 Research Background of Tracing Techniques 5
2.1 Tracer Solutions . 5
2.2 Software Tracing . 6
2.3 Hardware Tracing . 7
2.4 Hardware-assisted Software Tracing . 7
2.5 Out-of-band Tracing . 8
2.6 Intrusive vs. Non-intrusive Tracing . 8
2.7 ASSURED Software-based Tracing Approach Adoption 9

3 System Model 10
3.1 Use of Tracer in ASSURED Ecosystem . 10
3.2 Edge Device Hardware . 11
3.3 Edge Device Software Stack . 14

3.3.1 Secure World Software . 14
3.3.2 Normal World Software . 15

3.4 Trusted Computing Base (TCB) . 15

4 ASSURED Tracer Architecture 17
4.1 Adversary Model . 17
4.2 Operational Model . 18
4.3 Traces Security . 23
4.4 Running Example of the Complete ASSURED Tracing Flow 25

5 Control-Flow Tracing 28
5.1 Control-flow Attestation . 28
5.2 CFA Tracing Building Blocks . 29

5.2.1 Program Composition . 29
5.2.2 Runtime Attacks . 30

ASSURED D3.4 PU Page II

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

5.3 Tracing Method . 31
5.4 Trace Output . 34
5.5 Verifier Interface . 36

6 Configuration Integrity Tracing 37
6.1 Configuration Integrity Verification . 37
6.2 Tracing Method . 37
6.3 Trace Output . 38
6.4 Verifier Interface . 40

7 Attack Validation Tracing 41
7.1 Tracing Method . 42
7.2 Trace Output . 42
7.3 Tracer Interface . 43

8 Current Status and Future Plans 45
8.1 Current Implementation Status & Research Plan towards Second Release 45

8.1.1 Current Implementation Status . 45
8.1.2 Research Plan towards Second Release . 46

8.2 Discussion . 46

9 Conclusion 48

ASSURED D3.4 PU Page III

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

List of Figures

1.1 Relation of D3.4 with other WPs and Deliverables . 3

2.1 Overview of tracing solutions. 6

3.1 High-level Overview of Tracer Interaction with the ASSURED Ecosystem 11
3.2 ASSURED multi-level detailed tracing . 12
3.3 Overview of edge device components . 13

4.1 Overview of the tracer . 18
4.2 Overview of the page table mapping virtual-to-physical pages 19
4.3 Overview of address translation from virtual to physical addresses in ARM proces-

sors. 20
4.4 The Sequence of Actions for Control-Flow Tracing 26
4.5 Normal and Altered Control Flows . 27

5.1 control-flow attestation flow. 29
5.2 Abstract view of a program’s CFG and threats. 30
5.3 Overview of CFA tracing. 32
5.4 control-flow graph of a simplified program . 34

6.1 CIV Architecture . 38
6.2 Overview of CIV Tracing . 39
6.3 Exemplary Device Configuration with Libraries loaded in Physical Memory 40

ASSURED D3.4 PU Page IV

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

List of Tables

4.1 ASSURED Offered Solutions for Traces Security & Authenticity. The current im-
plementation follows the third approach as is also depicted in D4.2 [16] where the
entire protocol has been fleshed out . 25

5.1 CFA traces format. 33

6.1 CIV traces format. 40

7.1 Attack validation traces format. 42

ASSURED D3.4 PU Page V

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 1

Introduction

1.1 Towards Efficient Remote Attestation with Software As-
sisted Multi-level Execution Tracing

In the face of an increasing attack landscape, as described in D1.3 [11] and D2.1 [13], it is neces-
sary to cater for efficient mechanisms to verify software and device integrity for detecting run-time
modifications in next-generation “Systems-of-Systems”. Recall the latest trend in the attack vec-
tors, as documented by the Open Web Application Security Project (OWASP) [35], where an
updated ranking list of Common Vulnerabilities and Exposures (CVEs) was put forth: It is appar-
ent that memory-related vulnerabilities are becoming more prevalent and lucrative targets to be
exploited by adversaries for launching software-based attacks against deployed devices. Such
attacks can range from the exploitation of loopholes due to security misconfiguration and inse-
cure system design to vulnerable & outdated components and cryptographic failures. The
common denominator in all such cases is the lack of appropriate security hardening across
any part of the application stack: from the secure boot of a system (based on secure, certi-
fied, and tested software) to the run-time detection of software and data integrity failures through
efficient and effective trustworthiness control design.

In this context, ASSURED offers orchestration features of distributed (remote) attestation en-
ablers [8] for providing enhanced operational assurance and functional safety of the entire SoS-
enabled supply chain for checking and assuring the integrity and execution correctness of the
deployed safety-critical CPSoS. This defense mechanism enables the safeguarding of both the
software and hardware layers covering all phases of devices’ execution: from the trusted boot
and integrity measurement of a CPS, enabling the generation of static, boot-time, or load-time
evidence of the system’s components correct configuration (Configuration Integrity Verification
(CIV)), to the runtime behavioral attestation of those safety-critical components of a sys-
tem (as defined in D1.3 [11]) providing strong guarantees on the correctness of the control- and
information-flow properties, thus, enhancing the performance and scalability when composing
secure systems from potentially insecure components.

However, most of the existing families of such attestation solutions suffer from the lack of software-
based mechanisms for the efficient extraction of rigid system information traces. This limits their
applicability to only those cyber-physical systems with the necessary amount of resources for be-
ing able to perform detailed code analysis or equipped with additional hardware support. Unfor-
tunately, this approach does not capture the real-time constraints of emerging attestation security
enablers that require a detailed dynamic tracing of properties stemming from diverse levels of
a system’s architecture [36]: kernel shared libraries, low-level code, etc. resulting in an in-depth

ASSURED D3.4 PU Page 1 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

investigation of the systems behavior and execution flow towards detecting any cheating attempts
or if any type of (non-previously identified) exploits are resident to the memory.

To date, several remote attestation techniques have been proposed to verify the integrity of soft-
ware or the control-flow of devices. However, most of them are static and verify only the soft-
ware integrity of devices, and only recently some run-time Control-flow Attestation (CFA) and
Control-flow Integrity (CFI) schemes, leveraging control-flow information of a program, have been
proposed [8, 25, 28]. With CFA, sophisticated attacks that tamper with state information in the
program’s data memory (e.g., the stack and the heap) can be detected. CFA mechanisms can
be also deployed as part of holistic run-time risk assessment frameworks and contribute towards
a more concrete cyber risk quantification. In all of these approaches, however, there is always a
compromise between performance, security, and usability. This sets the challenge ahead: How to
provide near real-time low-level code inspection and tracing, thus, capturing the requirements of
ASSURED remote attestation while striking a balance between the precision of monitored system
traces, efficiency, and transparency?

1.2 Scope and Purpose

The main goal of this deliverable is to present the design of the ASSURED (software-based)
Tracer component, which includes its architecture, algorithms, and interaction with the
other ASSURED components ecosystem towards the provision of detailed systems traces
to facilitate the ASSURED attestation toolkit for real-time embedded devices. Unlike other
existing solutions, ASSURED Tracer does not require any custom hardware extensions, for
offering multi-level execution tracing with the required timing guarantees, and it can operate with
minimal trust assumptions as defined in D3.1 [6].

The ASSURED Tracer (tracer hereafter), is designed to securely capture all information regarding
the runtime state of each edge device. This includes, but is not limited to tracking control of
configured programs, and the entire device configuration state. The tracer generates traces,
which depict the necessary system measurements (based on the validation properties of only
those safety-critical components) to be used by the attestation verifiers, and calculates the risk
level on each device and in the entire ASSURED ecosystem.

The tracer is designed to run on the same device as potentially compromised software. However,
to ensure the trustworthiness of the traces it is run in a Trusted Execution Environment (TEE),
which provides an isolated execution guaranteed by the underlying hardware. This is essentially
the only assumption needed for guaranteeing the integrity and authenticity of the received traces
as part of the overall ASSURED Trusted Computing Base (TCB). As described in D3.1 [6] and
summarized in Section 4.3, ASSURED has already designed the appropriate protocol for this
secure and authentic communication between the tracer and the TPM-based Wallet which is
responsible for verifying the authenticity of the traces and their signing prior to being sent to the
Verifier. In this TEE, the tracer securely signs the traces to ensure their authenticity before passing
them to the TPM-based Wallet. The Trusted Software Stack (TSS) is not part of the “secure
world” of the TEE, thus, the need to use strong key usage protection policies for safeguarding the
integrity of the traces prior to also being sent to the Verifier.

We envision the tracer together with the TEE’s operating system to be small in size such that the
amount of code - as part of the TCB - is limited, which reduces the overall attack surface on the
tracer and does not pose a large fingerprint on the performance.

ASSURED D3.4 PU Page 2 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Figure 1.1: Relation of D3.4 with other WPs and Deliverables

In the following chapters, we present the designed algorithms to securely track control flows,
configuration, and variable values in edge devices, with negligible intrusiveness on the device
software, while using commodity off-the-shelf platforms, and with negligible desired impact on
software executing in the device. Finally, we present the different interfaces used to communi-
cate with the ASSURED components, including the attestation verifiers and the attack validation
component. We also provide samples of traces to depict the traces format and tracing granularity.

1.3 Relation to other WPs and Deliverables

In what follows, Figure 1.1 depicts the relationship of this deliverable with other Work Packages
(WPs) as well as other tasks in the same WP(3). As aforementioned, the main focus of this de-
liverable is the design of the ASSURED software-based, multi-level execution tracer for providing
the necessary system measurements to be used during the attestation enablers, as defined in
D3.2 [8]. Thus, this document acts as technical guidance for the monitoring of all validation
properties, defined in D1.3 [11] per use case, and for the interactions that need to be executed
between the Tracer and the other ASSURED components based also on the overall concep-
tual architecture defined in D1.2 [9]. in this context, D3.4 also puts forth the detailed description
of the entire ASSURED flow of actions and how the Tracer is been triggered and used towards
providing the necessary security claims that the Attestation Agent can then use for verifying the
level of trustworthiness of a device in the overall service graph chain.

For the latter, and to assure the security of the calculated traces, the design also takes into con-

ASSURED D3.4 PU Page 3 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

sideration the trust models and the detailed protocols (defined in D3.1 [6]) for the secure and
authentic communication with the TPM-based Wallet that, in turn, will sign the traces to en-
sure their integrity when sent to the Attestation Agent of the Verifier device. Detailed definitions
are also provided on the type of traces to be provided per attestation scheme so that they can be
integrated into the final Attestation Toolkit. In the same line of activities, besides the attestation
process, the Tracer also provides input to the ASSURED Attack Validation component that, de-
fined in WP2, in the case of a failed attestation report, it consumes the produced system traces
for being able to perform a more detailed analysis on the exact attack path that was leveraged by
the adversary to compromise the target device.

Overall, the outcome of Deliverable D3.4 is intended to support the definition of later activities in
the project. In relation to the rest of the WPs of the project, D3.4 serves as a point of reference
for the technical developments of the project as it offers a set of directions to each WP. More
specifically, D3.4 provides the description of the operation of the Tracer, the outcome of which will
be leveraged by the ASSURED attestation mechanisms towards assessing the assurance and
trustworthiness level of a “Systems-of-System”. This in turn will be recorded, audited, and shared
through the policy-compliant Blockchain infrastructure designed in WP4. Last but not least, WP5
undertakes the development of the integrated framework, and WP6 aim is the validation of the
high-level interactions of components in the context of the pilot use-cases.

1.4 Deliverable Structure

This deliverable is structured as follows: After providing necessary background knowledge in
Chapter 2, we describe in Chapter 3 the ASSURED System Model comprising the building
blocks and hardware and software components, including a discussion about the trusted comput-
ing base and its relation to the tracer. Next, in Chapter 4 we provide an in-depth description of
the tracer architecture while presenting the relation to the overall ASSURED ecosystem. Then,
in Chapter 5, we provide high-level information on the control-flow attestation mechanism, the
tracing method to capture control flows, and the interface with the attestation Verifiers. In Chap-
ter 6, we provide high-level information on the configuration integrity attestation mechanism, the
tracing method to capture loaded libraries and binaries in edge devices, and the interface with
the attestation Verifiers. In Chapter 7, we provide a high-level description of the attack validation
component, followed by a presentation on the tracing of variables defined in the system specifi-
cation given by an administrator and the interface the tracer and the attack validation component
use. Finally, we conclude this deliverable in Chapter 9.

ASSURED D3.4 PU Page 4 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 2

Research Background of Tracing
Techniques

As aforementioned, one of the core building blocks in any attestation scheme is the use of a
Tracer capable of extracting the necessary system measurements to be used for verification.
Such techniques are used to collect statistical information, performance analysis, dynamic
kernel or application debug information, and in general, system audits. In dynamic tracing,
this can take place without the need for recompilation or reboot. In the context of Control-flow
Attestation (Chapter 5), a detailed dynamic tracing [28, 36] of the kernel shared libraries, low-
level code, etc., and an in-depth investigation of the system’s behavior and execution flow will
be performed to detect any cheating attempts or if any type of (non-previously identified) exploits
are resident to the program and data memory. For instance, consider a device Txi that hosts a
critical software component C running a set of services Srv1, Srv2, ..., Srvj . Based on the pre-
defined policies that dictate when the attestation will commence, the trusted anchor in Txi will
request from the tracing component to record the control-flow of only those safety-critical services
(properties) of interest Srvk, ...Srvj . At the end of the execution, the tracer provides the trusted
anchor with the compiled CFGi that represents the run-time state of Txi, again only if those
properties of interest need to be attested.

In what follows, we give a state-of-the-art analysis on the most prominent types of tracing tech-
niques and discuss their merits and challenges. In the end, we also proceed with an evaluation
between intrusive and non-intrusive tracing capabilities in order to highlight the core features
of the ASSURED Tracer that allows it to perform an efficient tracing with high accuracy while
imposing the least overhead and impact on the device’s actual performance.

2.1 Tracer Solutions

Modern attacks aim at compromising software components in systems. Software is traditionally
considered more susceptible to attacks due to its fast pace changes and lack of verification as
opposed to hardware-based components. TPMs [43] are traditionally used to ensure that devices
are in a valid state. However, this only applies to the initial boot state of the devices. Attacks on
run-time may compromise the device even though it was initialized in a valid state due to internal
vulnerabilities in the deployed software components. Thus, as attacks get more sophisticated,
defenses must also follow the same pace. In this context, tracing solutions allows collecting
run-time data for the software components that can be used for attestation by remote parties.

Several open-source tracers exist in the literature. Examples include the Unix-based ftrace tool

ASSURED D3.4 PU Page 5 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Main memory

CPU

Software
Tracer

Main memory

CPU

Hardware
Tracer

Main
memory

CPU PCIe device

Softwrae
Tracer

Software
solution

Software solution
assisted by hardware

Software solution
assisted by out-of-band
hardware

Main memory

CPU

Hardware
assist

Hardware
solution

Softwrae
Tracer

Figure 2.1: Overview of tracing solutions.

that provides static and dynamic tracing. The SystemTap tracing tool provides dynamic tracing
through the use of Kprobes, Jprobes, and Uprobes [28]. These have traditionally been TRAP-
based tracing methods. However, it has been shown that leveraging such techniques consumes
a significant amount of resources in the host device for large software runs, thus, making their
integration infeasible for the resource-constrained edge devices envisioned in our scenario. An-
other example of dynamic tracing is DTrace but a visual survey of its code reveals that it offers
very limited optimizations, which limits its applicability.

Linux Trace Toolkit Next Generation (LTTng) tracing adds up considerably the collective tracing
impact on the target software for long runs, in resource-constrained and high throughput envi-
ronments, such as embedded network nodes and production servers [41]. An important aspect
regarding tracing is the need for filtering due to the large number of generated data [41].

Based on the above, in what follows, we provide details on various tracing approaches - leveraged
in remote attestation - as can be seen in Figure 2.1.

2.2 Software Tracing

SMART [22], is a static attestation scheme that establishes a root of trust in the edge device.
SMART targets platforms that execute code from external memory. The tracing code and key
used to ensure traces authenticity reside in internal read-only memory (ROM) and both are pro-
tected by access control policies of a memory protection unit (MPU). Upon receiving an attesta-
tion request, SMART executes the tracing code in ROM, which reads a region of code memory
and computes an HMAC of the content to be provided in the attestation response. Then the
attested code executes atomically.

C-FLAT [2] uses a Trusted Execution Environment (TEE) that hosts a tracing program, which
collects data of another application and constructs the control-flows for it towards verification
via control-flow attestation. This is a step forward in protecting the software stack compared
to TPM-based attestation that only validates the initial device state. Moreover, as the tracing
software is isolated by the TEE hardware it maintains the trustworthiness of the collected data.
However, the control-flow tracing itself is based on instrumenting the programs such that any
control-flow instructions would transition to the TEE. This design decision has a performance hit
due to crossing the boundary to the TEE and the intrusive changes to applications that might not
apply to all users.

ASSURED D3.4 PU Page 6 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

More recently, DIAT [1] was introduced to perform an efficient control-flow tracing. DIAT traces
integrity-relevant control-flow events, which are instructions that transfer the flow of a program’s
execution from the current instruction’s address to an address determined at run-time. Thus, DIAT
also relies on instrumentation, yet, it filters many control-flow events to reduce the performance
impact of the tracing mechanism.

2.3 Hardware Tracing

Encouraged by C-FLAT’s success, prior work used hardware-based tracing to improve control-
flow run-time collection. For example, LO-FAT [21] introduces new hardware extensions to com-
mon processors to allow tracking of control-flow events while performing hash calculations paral-
lel to program execution to report the executed control-flows of programs. Furthermore, LO-FAT
supports the control-flow acquisition of legacy programs as it removes the need for binary instru-
mentation, which is required by C-Flat.

Further building on LO-FAT, Artium [45], is a recent work that showed time-of-use-to-time-of-
check attacks on control-flow attestation. In a nutshell, an adversary can interleave benign
instructions with malicious ones in-between attestation requests. For example, this can be done
by replacing the original memory interface with an interface to an attacker-controlled memory
controller. Thus, the adversary can execute malicious code when an attestation process is not
currently running. Artium solves these attacks by proposing new extensions to the processor,
such that like LO-FAT control-flows will be measured, however, Artium also measures every re-
tired instruction. Thus, all code is attested for in the cost of higher performance impact and more
intrusive changes to existing processors.

In ASSURED, to encourage adoption of our approach, we focus on off-the-shelf processors,
therefore, we do not utilize end-to-end hardware-extension-based tracing mechanisms. Instead,
we focus on existing hardware-assisted mechanisms such as ARM Coresight, as discussed next.

2.4 Hardware-assisted Software Tracing

ARM Coresight is a hardware-assisted tracing component that can be used to reduce the perfor-
mance impact of control-flow tracking, while also removing the requirement for instrumentation of
programs. Specifically, with Coresight tracing enabled, the CPU maintains a circular buffer and
writes configured set of instructions that were executed by the processor pipeline. A software
tracer can use this information with knowledge of the instructions and structure of the program
being traced to recover the higher-level control-flow information. We provide the details of this
tracing method in Chapter 5.

In the same direction, another hardware-assisted mechanism is Intel Processor Trace (PT). Intel
PT is an architecture extension introduced and implemented by Intel processor micro-architectures
from Broadwell and Apollo Lake onward. Intel PT provides hardware support for tracing code ex-
ecution with minimal CPU overhead. It defines a set of model-specific registers (MSRs) that
the operating system can use to enable and configure tracing and exposes a stream of pack-
ets containing compressed execution information of the traced binary. This packet stream can
be captured and written into a memory buffer for further analysis. The most common use case
is recording the Intel PT trace stream to disk for post-mortem decoding and analysis. How-
ever, real-time control-flow attestation implementation also exists. To supplement the Intel PT

ASSURED D3.4 PU Page 7 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

trace, the operating system can also provide sideband information, such as linked binaries and
context-switching when tracing multiple threads on the same CPU. This information can be used
to correlate the Intel PT trace with the linked binaries to reconstruct the control-flow of traced
execution, which is similar to our tracing mechanism with Coresight. Yet, the ASSURED tracer
recovers the operating system information through online forensic analysis.

Hardware-assisted tracing solutions such as Intel PT and Coresight generate very large amounts
of data when tracing, so sophisticated filtering and optimized parsing are necessary to isolate the
relevant information and decode it before it is overwritten by new data (retired instructions). This is
where ASSURED comes into play: By leveraging advanced (software-based) parsing techniques,
we can extract targeted information and narrow down the context of a trace in a very small amount
of time. These include filtering by a user- or kernel-space, process, and instruction pointer
(IP) addresses. Thus, it is possible to narrow the trace context down to a single function,
or even an internal subset of a function.

2.5 Out-of-band Tracing

Recent advances on out-of-band tracing solutions such as those used by Nvidia AppShield [32]
demonstrate a powerful tool to infer run-time information on systems without exposing the
tracer to an attacker. The reason is that there is physical isolation between the tracer and the
software running on the devices. Thus, even compromising the device including the TEE will not
disable the tracing.

The main idea behind out-of-band tracing is to utilize the hardware to perform Direct Memory
Access (DMA) and introspect into the main memory used by software running on the CPU.
This has the advantage of a reduced attack surface and not competing with the software exe-
cuting in the CPU for hardware resources, thereby limiting the tracer performance impact on the
software. However, it requires additional hardware support such as a dedicated PCIe device with
sufficient compute capabilities to run the tracer. Despite recent advancements in embedded PCIe
devices.

In ASSURED, we choose not to include such a tracing component to encourage adoption by
utilizing popular and widely-used platforms accessible to many use cases.

2.6 Intrusive vs. Non-intrusive Tracing

Tracing is a powerful tool to recover high-level information, which can be used to enhance security
as performed by the ASSURED ecosystem. Unfortunately, tracing can also potentially cause a
degradation in the overall performance of both programs being traced, and in extreme settings
the entire system.

Traditionally, it is common to consider two forms of tracing: intrusive and non-intrusive. Intru-
sive tracing corresponds to tracers that require changes in the programs being executed.
For example, instrumenting programs through static or dynamic binary rewriting, or even through
compile-time transformation passes are ways to introduce new logic to existing programs. This
added logic can be used to capture relevant information about the programs, and the entire sys-
tem’s state. Non-intrusive tracing, however, does not require changes in the programs
and uses different methods to capture the necessary information on the programs. For

ASSURED D3.4 PU Page 8 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

example, through hardware capabilities such as ARM Coresight and Intel PT, or through oper-
ating systems management features such as signals and traps being introduced into programs
execution.

However, trap-based methods are known to incur high-performance impact due to a large number
of context switches between real program execution, and the trap logic execution states.

In ASSURED, our goal is to both reduce the tracing performance impact and provide seam-
less integration with the programs without forcing developers to change them in advance.
This will essentially unlock the possibilities of remote attestation and it would enable the easy
employment of such advanced techniques offered by ASSURED. To the best of our knowledge,
ASSURED is one of the first initiative towards providing such a purely software-based Tracer ca-
pable of providing high-level of detail and accuracy in tracing a multitude of a system’s functional
properties.

Thus, we consider hardware-assisted tracing capabilities whenever they are available in
commodity processors and use a software-based tracer to efficiently recover information
made available by the hardware. Since the hardware is highly optimized and has negligible
impact on the system’s performance, and the tracer can run in parallel to other programs without
interfering with their execution states, we achieve both goals: non-intrusiveness by not chang-
ing the programs, and reducing the need for trap-based tracing using hardware whenever it is
available.

2.7 ASSURED Software-based Tracing Approach Adoption

Hardware-based tracing is less flexible compared to software-based tracing as the hardware
needs to provide support for the tracing and is not as straightforward to make any necessary
adaptations (this usually requires additional certification which is not a preferred process by the
hardware vendors). Thus, hardware-based tracing alone cannot support all requirements in AS-
SURED, e.g., for tracing both control-flows and configuration integrity of the platform in an effi-
cient manner. Furthermore, in ASSURED we use off-the-shelf components, thus, some recent
advancements in hardware-based tracing cannot be used as they are not implemented by ven-
dors’ platforms. Hence, the decision to provide purely software-based tracing capabilities
capable of delivering high accuracy even for low-level tracing down to a single function.

In ASSURED, dynamic tracing functionalities are provided, as software programmable com-
ponents, enabling the continuous monitoring of kernel shared libraries, system calls, shared data
and memory address space, etc., and the in-depth investigation of the systems’ behavior for de-
tecting cheating attempts or if any type of exploits to the program and data memory. This provides
the trusted anchor with the compiled control- and information-flow graphs (CFGs & DFGs) that
represent the run-time state of a remote device, against the configuration and execution proper-
ties of safety-critical components. ASSURED advanced tracing techniques are software-based
and leverage embedded OS introspection agents capable of traversing the entire physical mem-
ory of a CPS, via Direct Memory Access, for known execution signatures. These tracing func-
tionalities will be fully programmable, enabling the priority of the ASSURED Framework towards
dynamic adaptation of tracing.

ASSURED D3.4 PU Page 9 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 3

System Model

In this chapter, we summarize the system model, adopted in ASSURED and was first presented
in D3.1 [6], and in particular the Trusted Computing Base (TCB) that comprise the architecture of
the edge devices. Recall that, as was described in the defined trust models of ASSURED [6], the
core requirement for the correct operation of all attestation enablers is the trustworthiness and
authenticity of the employed Tracer. This is the reasoning behind placing the Tracer as part of
the ASSURED Device TCB.

In this context, the high-level architecture of each edge device is depicted in Figure 3.3. As
can be seen, the trusted and untrusted components are isolated via the underlying hardware.
We discuss the full details of the ASSURED system model next and provide also the high-level
conceptual architecture of the proposed tracing mechanism in Section 3.1.

3.1 Use of Tracer in ASSURED Ecosystem

Figure 3.1 depicts a high-level overview of the tracer positioning within the ASSURED ecosys-
tem and its interaction with other ASSURED components - especially the Attestation Agent (as
part of the TPM-based Blockchain Wallet [17]) that is responsible for “reading” the attesta-
tion policies from the ledger, extract the resources (systems properties) to be monitored for then
triggering the tracer to initiate its operation. This relationship also includes the verification and
signing of the extracted traces by the TPM-based Wallet based on the already created At-
testation Key (AK). Recall that in order to guarantee the correctness and authenticity of the
received traces, the usage of the AK is protected through a policy that only accepts traces signed
from the (pre-installed) tracer’s symmetric key [6].

The other ASSURED component that continuously interacts with the tracer is the Attack Valida-
tion component (Figure 3.2). As described in D2.7 [14], ASSURED also offers security foren-
sics and fuzzing capabilities for better resilience and mitigation planning. More specifically,
in case of a failed attestation report, which is an indication of risk, the Attack Validation component
collects the system traces so that it can perform a detailed memory fuzzing towards identifying the
exact attack path that was exploited by the adversary, thus, possibly leading to the identification of
new (zero-day) exploits for which new attestation policies will need to be compiled and deployed.
Towards this direction, as can be seen in Figure 3.2, the Attack Validation component may also
request more detailed traces (including additional information on the internal memory view of
the target device), thus, allowing for a multi-level detailed tracing. The motivation behind this
approach is that the employed attestation should not target the whole stack of a system’s architec-
ture unless there is an indication of suspicious activities. More precisely, the scope of monitoring

ASSURED D3.4 PU Page 10 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

ASSURED
Blockchain

Infrastructure

Verifier Prover

TracerAttestation agent

Request
attestation trace

Program
0

Program
N

Attack validation

Read attestation
policy &
Write attestation
result

Failed verification
vulnerability detection

Request attack validation tracing

Figure 3.1: High-level Overview of Tracer Interaction with the ASSURED Ecosystem

and tracing granularity should be increased only when additional evidence and information need
to be collected, on a detected incident, for the assistance in finding the province of the attack as
well as in the development of new enforceable attestation policies that should be able to catch
this newly identified threat [36].

As it pertains to the overall ASSURED flow of actions (Figure 3.1), the Verifier is the entity respon-
sible for supporting the different ASSURED attestation schemes [8]. The Verifier, upon reading
an attestation policy, initiates a remote attestation process based on the extracted policy, which
is populated in the Blockchain infrastructure of ASSURED by the Security Context Broker (SCB)
based on the current scheduling policy and risk level assessed per each edge device and the
global ASSURED ecosystem. This policy is sent to the attestation agent, which allows invoking
the requested attestation task: either CFA or CIV. Additional parameters are also read from the
Blockchain, including a fresh nonce and parameters that are required for the attestation task,
such as a process identifier that the tracer will trace for the CFA attestation scheme. The attesta-
tion agent sends the tracer a request to compute the trace according to the extracted parameters.
The tracer computes a trace, signs it, and passes it back to the attestation agent for verification.

Once the traces are received, the Verifier validates the signature of the traces and performs
the attestation validation based on the content of the traces. For example, a CFA Verifier
validates that the control flow represents a benign execution pattern. The attestation results are
later written to the Blockchain, which facilitates further attestation schemes for all the deployed
edge devices in ASSURED.

Finally, as aforementioned, in case of a failed validation, the Attack Validation component is trig-
gered by the Verifier. The attack validation component then passes requests to the tracer to
capture the values of core variables. These variables are also passed as a signed trace, such
that the signature can be validated. Finally, the attack validation component uses this data to infer
vulnerabilities in the program logic in order to analyze attacks sources and potential remediation.

3.2 Edge Device Hardware

Hardware components: We envision ASSURED edge devices would contain in their package
the following hardware components: a Trusted Platform Module (TPM), a TrustZone-supported
ARM processor, volatile memory, and non-volatile storage, and finally a network interface card.

ASSURED D3.4 PU Page 11 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Figure 3.2: ASSURED multi-level detailed tracing

To support efficient and fine-grained control-flow tracing of programs on edge devices we require
the processor to support the CoreSight tracing extensions.

ARM TrustZone background: ARM TrustZone [31] provides access control capabilities, en-
forced by the hardware that lets programs switch between two worlds: a secure world, and a
normal world. Specifically, the processor enforces isolates across the worlds providing a secure
execution environment for programs such that programs executing in the normal world cannot
leak or tamper with code and data that are part of the secure world.

Internally, the processor includes a non-secure (NS) bit that is used to identify the currently active
world. That is, a value of 0 in the NS bit means the processor can only execute programs in
the normal world, whereas a value of 1 means the processor can only execute programs in the
secure world. Furthermore, the processor partitions the volatile memory between the two worlds.
Effectively, each world has access to its region of volatile memory. Yet, programs can opt in to
share memory regions, which allows passing requests and responses for computations being
made by the secure world to the normal world and vice versa.

We deploy the tracer in the secure world to provide strong security guarantees. Thus, even if
the normal world is compromised it does not affect the tracer’s functionality and ability to attest
programs executing in the normal world.

ARM CoreSight background: The CoreSight architecture provides a system-wide solution for
real-time debugging and tracing capabilities enforced by the processor. Coresight has evolved

ASSURED D3.4 PU Page 12 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Trusted
Computing Base

Runtime Tracer

Untrusted

TPM
Software

Stack

Hardware

CPU TPM

Normal Operating systemSecure Operating system

Attestation
agents

Blockchain
wallet

Memory Peripherals

Figure 3.3: Overview of edge device components

and includes different tracing capabilities such as Embedded Trace Macrocells (ETMs), AMBA
Trace Macrocells, Program Flow Trace Macrocells (PTMs), and System Trace Macrocells (STMs).

Specifically, Coresight enables configuring the processor to store retired instructions in a circular
log buffer in a dedicated region in the main memory. Thus, the tracer can read the memory and
based on the instructions infer control-flow decisions made by the traced programs to later create
a trace report of control-flow execution towards control-flow attestation (CFA) by a Verifier.
In ASSURED we focus on PTMs and ETMs to provide hardware-backed tracing capabilities. PTM
and ETM can be used to only trace instructions which relate to the control flow, thereby reducing
the tracing performance impact and the load on the circular buffer.

Trusted Platform Module (TPM): A TPM is a hardware module, which is traditionally used to
act as a hardware root-of-trust (RoT) for a platform. In ASSURED, a TPM is used as the building
block of the TPM-based Wallet [17] which is responsible for the correct creation and manage-
ment of all cryptographic material (Attestation Key, DAA Key, symmetric communication key,
etc.), key usage protection (through the specification of adequate policies [6]) as well as the
continuous authentication and authorization of the host device through the issuance and
management of Verifiable Presentations based on credentials that include the necessary at-
tributes needed for performing the various ASSURED operations (and have been validated by the
Privacy CA during the Device Registration and Enrollment phase). The latter is used to access
smart contracts for the different attestation primitives provided in ASSURED. The ledgers are also
used to record the results of the attestation Verifiers to the blockchain.

The TPM is used in ASSURED to provide hardware-based protection, which is traditionally con-
sidered more secure compared to software-based protections. Thus, ASSURED utilizes the
Trustzone architecture to combine trusted execution environments with TPM functionality.
Specifically, the TPM provides encryption and decryption for any user data and secure storage.
Access to the data is controlled by a securely stored cryptographic key. Furthermore, the TPM
includes Platform Configuration Registers (PCRs), a memory location in the TPM that has some
unique properties. For example, the size of the value that can be stored in a PCR is determined
by the size of a digest generated by an associated hashing algorithm. The TPM technology re-
quired by ASSURED use cases is used to enable secure remote attestation and authentication.
This enhances the confidentiality and integrity of the exchanged data. Platform authentication will
be performed by the TPM and is required in the ASSURED framework to prove that the platform
is with a legitimate identity.

This design choice enables the concept of Zero Trust security principle, with the need of “Never
Trust, Always Verify ”, for which ASSURED bootstraps vertical trust for all devices and users in

ASSURED D3.4 PU Page 13 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

the target SoS by enabling continuous attestation, authorization, and authentication prior to
being allowed to communicate and/or be granted to data or resources. This type of TCB allows
the flexibility of being able to guarantee the correctness of the tracing features of ASSURED
(through the TEE), as the cornerstone of the entire framework correctness [8], and the correct
(self-) issuance of cryptographic material and verifiable credentials through the use of a
TPM as the building block of the ASSURED TPM-based Wallet [17].

We have to highlight that while ASSURED implementation will be instantiated based on the use
of OP-TEE, as the underlying trusted execution environment (Section 3.3.1), and TPM, all of the
attestation models and secure data management schemes to be designed (as part of the WP3
and WP4 research activities) should be agnostic on the type of TCB to be considered.

3.3 Edge Device Software Stack

The tracer is a software component, which is part of the Trusted Computing Base (TCB) [6] of the
edge device. The tracer continuously introspects the programs executing and collects information
to be used as part of the attestation schemes of ASSURED: control-flow graphs for the control-
flow attestation and hashes of code pages for the configuration integrity verification. The
tracer signs the traces in the secure world passes them to the TPM-based Wallet for verification
which then forwards them to the Attestation Agent of the Verifier for performing the requested
attestation operation. We provide more details on the tracer component in Chapter 4.

3.3.1 Secure World Software

The Open Portable Trusted Execution Environment (OP-TEE), is a widely-used and popular open-
source reference implementation for TrustZone-based TEEs. OP-TEE is designed as a compan-
ion to a non-secure Linux kernel running on ARM processors. OP-TEE implements TEE Internal
Core API v1.1, which is the API exposed to Trusted Applications, and the TEE Client API v1.0,
which is the API describing how to communicate with a TEE. Those APIs are defined in the Glob-
alPlatform API specifications [38]. Furthermore, OP-TEE can run on an emulator as well as on
numerous comparatively inexpensive platforms [33].

The non-secure OS is referred to as the Rich Execution Environment (REE) in TEE specifications.
It is typically a Linux OS flavor, which is used by the different use cases considered in ASSURED.
Yet, it also allows other operating systems to be used together with OP-TEE such as Android.
OP-TEE is designed primarily to rely on the Arm TrustZone technology as the underlying hard-
ware isolation mechanism. However, it has been structured to be compatible with any isolation
technology suitable for the TEE concept and goals, such as running as a virtual machine or on a
dedicated CPU. Finally, OP-TEE provides the following security design goals.

Isolation: The TEE provides isolation from the non-secure OS and protects the loaded Trusted
Applications (TAs) from each other using underlying hardware support.

Small TCB: The TEE should remain small enough to reside in a reasonable amount of on-chip
memory as found on Arm-based systems.

Portability: The TEE aims at being easily pluggable to different architectures and available HW
and has to support various setups such as multiple client OSes or multiple TEEs.

OP-TEE builds on top of the ARM Trusted Firmware, which is used as the basis for many software
architectures found on commercially available devices. Furthermore, it is actively maintained and
well documented.

ASSURED D3.4 PU Page 14 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

In ASSURED, we execute the user programs in the normal world as we describe next. The secure
world is unaffected by their execution as the hardware enforces isolation across the worlds. Thus,
we place the tracer in the secure world to enforce the trustworthiness of the generated traces that
are used by the different Attestation Agents to provide assurance of the edge devices’ security.

3.3.2 Normal World Software

In ASSURED, we assume the normal world is using a Linux-based OS. Linux is a widely used,
family of Unix-like OSs, which are based on the Linux kernel. We assume the normal world will
manage the drivers, e.g., to manage I/O devices such as the network and the storage. Thus, the
traces must be sent to external devices through the normal world, and to ensure their trustwor-
thiness we employ cryptographic operations as we discuss next.

Furthermore, as Linux is popularly used, it has support for many libraries and frameworks that
enables quick and simple deployment of the different applications considered in the context of
ASSURED’s use cases. Finally, as the normal world manages all devices, this includes the TPM
and thus the TPM software stack (TSS) is entirely placed in the normal world.

TPM Software Stack (TSS): The TSS is a Trusted Computing Group (TCG) software standard
that provides a standard API for accessing the functions of the TPM. Any local or remote com-
munication with the TPM-based Blockchain wallet is achieved using TSS. TSS provides all the
necessary TPM commands for various crypto primitives. It also reduces the programming com-
plexity of applications that desire to send individual TPM commands. The TSS in the context
of ASSURED will be providing the necessary standard API stack for “driving” the TPM towards
supporting features such as registration, login, and authentication using trusted hardware/wallet
for accessing the ledger, smart contract read/write/execution, management of proofs, e.g., iden-
tity, reputation value, status, in consensus algorithm. The TPM will be coordinated by the host
software towards forming the TPM-based Blockchain Wallet in the ASSURED framework. The
TPM-based Blockchain wallet communicates with the rest of the Blockchain components of the
ASSURED ecosystem to securely access ledgers content. Moreover, smart contracts are read
and executed through the Blockchain wallet, and their security and privacy are enforced by the
TPM.

Attestation Agent: The Attestation Agent is the “bridge”, running on the host device, for enabling
the correct orchestration of the tracer based on the attestation tasks that need to be executed.
These can either be Control-flow Attestation (CFA) that analyzes control-flow traces to verify the
state of the Prover; Configuration Integrity Verification (CIV) the monitors the configuration state
of the prover device; Direct Anonymous Attestation (DAA) which can verify the membership of
a device for a group without disclosing privacy-related information; Swarm Attestation which can
attest large groups of devices; and, Jury-based Attestation that utilizes multiple Verifiers if the
Prover disagrees on the result of the first Verifier.

3.4 Trusted Computing Base (TCB)

The TCB refers to a set of hardware, firmware and software components that are supposed
to be resistant to any type of attacks specified in the adversarial model and are assumed secure
by default. The TCB is required for implementing primitives like attestation that provide security
guarantees and is crucial for the security of the entire system [26,37]. In this section, we provide

ASSURED D3.4 PU Page 15 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

a summary of the TCB components in edge devices in ASSURED. The full description is available
in D3.1 [6].

Hardware TCB: We assume the SoC hardware components including the processor, system
buses, memory, and peripherals as part of the TCB. Moreover, we assume the existence of a
TPM and include it in the TCB. We assume the TPM provides trustworthy and correct security
engines. ASSURED core services such as attestation and blockchain wallets are implemented
based on the TPM services. We assume the ARM processor in the edge devices supports
the Trustzone architecture to provide a trusted execution environment (TEE), which enables a
hardware-assisted isolated execution environment.

Software TCB: First, we assume the edge devices’ firmware as part of the TCB. The firmware
is responsible for booting the edge devices, before loading both the secure world operating sys-
tem and normal world boot loader and operating system. Furthermore, we assume that each
boot stage in the firmware measures and validates the next boot stage, and extends the loaded
images hashes into the TPM to later provide an attestation report on the loaded software of the
system, including the secure world OS image. As mentioned, the firmware implements the secu-
rity monitor, which provides a secure context switch between the normal and secure world, and
prevents leaking the internal states of the secure world to the normal world. The tracer and TPM
wallet, which comprises the core functionalities of the ASSURED framework, are crucial to the
security of the whole ASSURED architecture and are assumed as part of TCB running inside the
secure world. Both are executed as user space programs. The integrity of the tracer and TPM
wallet is verified before loading them into the secure world by measuring the deployed binaries
and validating them.

ASSURED D3.4 PU Page 16 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 4

ASSURED Tracer Architecture

A high-level overview of the tracer architecture is depicted in Figure 4.1. The tracer is a software
component executing in a Trusted Execution Environment (TEE), and specifically the secure world
in ARM Trustzone. Therefore, the tracer is part of each edge device’s TCB acting as a trust
anchor, which is inaccessible to attackers who potentially can compromise the rest of the device.
The tracer runs continuously as a daemon process in the TEE, tracking the volatile physical
memory of the device. Furthermore, the tracer has an untrusted interface executing in the normal
world. This is the only communication interface exposed to the tracer and is leveraged by the
Attestation Agent for controlling which tracing policy should be invoked by the tracer (depicting
which specific system validation properties to be traced [11]) and receive the traces to be used
towards attestation verification.

Please note that the use of ARM Trustzone is the current instantiation of the tracer. However, we
have to highlight that the design of the tracing capabilities of ASSURED can operate within any
type of TEE that offers isolation capabilities so that tracer is assumed trusted.

4.1 Adversary Model

We assume a strong threat model where the adversary may compromise programs outside of the
secure world. The adversary may try to leak or tamper with data being processed in the normal
world. However, the adversary cannot tamper or leak data in the secure world. Under these
assumptions, the tracer guarantees the generated traces to be correct and represent the state
of the normal world programs. Using the traces, the attestation agents can detect attacks and
report them to the ASSURED cloud backend framework.

Examples of attacks that can be considered in ASSURED for which the detection will leverage
produced traces are the following:

• Security Misconfiguration: A malicious modification in the configuration of a device, en-
abling access by a malicious party. This is relevant to all use cases, since all devices need
to be protected from threats resulting from an untrusted configuration. This is mitigated by
employing the newly developed Configuration Integrity Verification (CIV) [8] based on types
of traces as described in Chapter 6.

• Vulnerable and Outdated Components: Outdated components are notoriously suscep-
tible to security threats and attacks, since they may be loaded with firmware or application
software that has not been patched in order to be protected from newly identified threats.

ASSURED D3.4 PU Page 17 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Edge device

Program ARuntime Tracer

Secure world

Untrusted tracer

interface

ASSURED

cloud

backend

Normal world

Program B

Introspect memory

Main memory

Program A Program B …

Figure 4.1: Overview of the tracer

This falls under the category of software vulnerabilities that can be mitigated by attestation
services, verifying that the components possess the latest software versions.

• Insecure Design: Refers to architectural flaws related to design methodologies that cause
vulnerabilities. Therefore, this category does not refer to a specific kind of vulnerability, but
design and coding practices that make devices and systems more susceptible to various
kinds of attacks. These can be detected with the help of attestation, so that they can be
patched in future versions of the software.

• Cryptographic Failures: Encompasses failures and attacks related to cryptographic func-
tions and cryptographic primitives. This is of particular importance in the smart satellite
use case, which employs a variety of cryptographic schemes and protocols for communica-
tion of the base station with the deployed satellites and can be mitigated by the ASSURED
traffic verification and attestation services.

4.2 Operational Model

In what follows, we give a detailed overview of the steps performed by the tracer as depicted in
Figure 4.1. We first give a description of the internal actions performed, as building blocks, prior
to showcasing the complete chain of actions/events that take place in ASSURED (Section 4.4)
through a concrete example from one of the modeled use cases.

Initialization: The tracer is pre-configured with specific device information: symbol names and
their corresponding offset in memory for both the normal world’s operating system and
programs that are executed in the normal world. This information is received by the System
Administrator as part of the system description that needs to be provided per each software asset
when registered in the ASSURED Risk Assessment component. Such information is needed
so that the appropriate risk graph can be calculated [15] based on which an optimized set of
attestation policies will be calculated that will also contain the tracing policies to be deployed to
the edge devices.

Memory acquisition: We allow the tracer to operate both in the secure world with enhanced
security guarantees inherited by the TCB (enforcing the isolated execution environment) as well
in the normal world, which simplifies the deployment of the tracer.

ASSURED D3.4 PU Page 18 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

In the normal world, we assume the existence of a Unix-based operating system. We use a
kernel module to expose access to the physical memory of the platform via ioctl() requests.
Effectively, it acts similar to a memcpy()-like interface passing requests to read a region of the
physical memory starting at a requested address and a given byte-length storing the content into
a buffer in the address space of the requesting application. Note, this is only possible to normal
world operation mode since communication with kernel modules cannot be secured when
made by programs executing in the secure world.

Instead, in the secure world operational mode, we assume OP-TEE is used as the secure world
operating system. However, this is only used as a reference point for the implementation of the
tracer. Our design is agnostic on the type of trusted execution environment to be used. The OP-
TEE operating system has access to the entire physical memory of the platform enforced by the
ARM trusted firmware. In this mode, we provide an extension to the OP-TEE operating system to
map a requested region in the normal world’s part of physical memory to the secure world. This
is done in per-page (4 KB) granularity in a streaming fashion. That is, each page is mapped, read
into a software buffer, and unmapped. Thus, we gain access to the normal world’s memory in the
secure world and can introspect and analyze it to provide secure traces as discussed next.

Virtual memory

Translation table

TTBR1_EL1

Translation table

TTBR1_EL0

Reserved

Peripherals

Reserved

RAM

Reserved

RAM

Reserved

Kernel
space

User
space

0x00000000_00000000

0xFFFFFFFF_FFFFFFFF
Physical memory

Reserved

Peripherals

Reserved

RAM

Reserved

Figure 4.2: Overview of the page table mapping virtual-to-physical pages

Virtual-to-Physical Translations: Interestingly, access to the physical memory is insufficient to
provide control-flows of applications and configuration integrity of the platform. The reason is
that programs and operating systems operate in virtual address space [24]. Current processors
provide paging capabilities through virtual-to-physical page tables that map each virtual address
to a physical address, thereby creating two address spaces (see Figure 4.2). Specifically, each
memory access instruction that a program issues undergoes a page walk translating the virtual
address into a physical one, in page granularity (4 KB region). This translation is performed by
current processors with different architectures, such as ARM and x86. This includes the type
of micro-controllers assumed in ASSURED; this is not a strong assumption made by the project

ASSURED D3.4 PU Page 19 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

TTBRx

TTBR
select

L0 page table

Virtual address

Physical address

Page
offset

Page
offset

L3 indexL2 indexL1 indexL0 index

L1 page table L2 page table L3 page table

entry
entry

entry

entry

Page address

Figure 4.3: Overview of address translation from virtual to physical addresses in ARM processors.

as ARM is currently considered the most prominent type of processor leveraged in commodity
embedded systems encountered in many application domains. However, in ASSURED, this will
also be considered in other types of processing units and operating systems such as in the
“Secure Aerospace” use case where a specific type of operating system is considered called
KUB-OS [18]. Overall, this involves using the virtual address as an indexer to a hierarchical page
table (see Figure 4.3). The processor is combined with a hardware mechanism to perform the
page table walk efficiently and caches the translation in a structure called the translation look-
aside-buffer (TLB) for faster access to future memory access instructions to the same page. The
tracer implements the same page walking mechanism, yet, in software that is running as part of
ASSURED TCB.

For the tracer to analyze the control-flow or configuration integrity of programs executing in the
platforms, it must know the exact structure of the page tables used by the edge devices. The
tracer starts by using a specific known address of a symbol that was embedded into it during
the initialization phase - this is something that can also be read from the Blockchain (through
the provided System Description). This essentially represents the starting point of the tracer for
a specific codebase (software function) as defined by the downloaded attestation policy. The
symbol is for the init task, the first task that the Linux operating system executes. Interestingly,
this address is in virtual memory and the content of the physical memory is always the same
as it describes the initial task, which has the same name, process identifier, etc. The tracer
uses this information and partitions the main memory into 4 KB regions representing pages. The
tracer then iterates over all regions considering each page as a candidate address for the page
table root address. Each candidate is treated as the entry point to the page table, and the tracer
implements a software page walk, thereby translating the address from virtual to physical. A
successful translation of the init task address and reading the content of the task validating it
is correct means the tracer found the correct page table address and can use it to translate future

ASSURED D3.4 PU Page 20 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

virtual addresses.

To conclude, the output of this phase is the physical location of the first level of the page table
used by the Linux kernel. This address is used by the tracer to translate virtual addresses into
physical ones, before accessing the content stored in these addresses. The latter is used by the
tracer to infer information on the system, specifically on software executing in the normal world
as explained next.

Recovering System-Wide Information: Utilizing this exact symbol information and virtual-to-
physical translation capability the tracer can recover high-level semantic information about the
edge device and programs executing in it. It does so by using apriori knowledge of the operat-
ing system services and their respective implementation. For example, to recover the currently
active processes in an edge device the tracer uses the task struct structure defined as part
of the Unix-based OS kernel. The task struct contains information about a specific process
such as its unique identifier, its name, its virtual memory addresses, etc. Furthermore, the
task struct acts as a linked list node in a Unix-based OS and, thus, contains a pointer to
the next task struct node. While these pointers contain virtual memory addresses, the tracer
armed with the knowledge of virtual-to-physical address translation can traverse the linked list,
perform software address translation and recover the details of all currently running processes
on the device.

Similarly, the tracer can infer information about the state of the normal world and programs
executing in it. For example, using symbol information and virtual address translation the
tracer can access data structures stored in the Linux kernel memory region that are used to
track loaded kernel modules. Using data stored in these data structures, the tracer can infer
which kernel modules are currently in use. This is one of the core innovations in ASSURED
that also enables us to perform multi-level execution tracing; including both the monitoring
of the loaded binary hashes (to be used in Configuration Integrity Verification - Chapter 6) and
low-level tracing of mission-critical processes even at the kernel level (to be used in Control-Flow
Attestation - Chapter 5). The outcome of the tracing process is in all cases the extraction of
the corresponding CFGs (in the context of CFPA) and/or binary hashes (in the context
of CIV). The motivation behind this multi-level approach is that the employed attestation should
not target the whole stack of a system’s architecture unless there is an indication of suspicious
activities. More precisely, the scope of monitoring and tracing granularity should be increased
only when additional evidence and information need to be collected, on a detected incident,
for the assistance in finding the province of the attack as well as in the development of new
enforceable attestation policies that should be able to catch this newly identified threat.

Furthermore, as we discuss more in Chapter 6, the tracer can also iterate over all active pro-
cesses in the normal world and read the data structures containing information on their mapped
virtual address spaces to acquire all loaded libraries and binaries. This is used as part of the
configuration integrity verification attestation scheme with a verifier that checks whether the in-
memory state of the platform matches the expected state that was configured to be deployed in
the edge devices.

Continuous Non-Intrusive Tracing: The tracer is configured to continuously run in the secure
world and traces the normal world. Therefore, the tracer’s secure world component, which reads
the normal world’s memory content does not require changes to the normal world’s software
stack. We envision the tracer would run in parallel (on a separate CPU core) and result in a
negligible impact on the performance of programs executing in the normal world. The reason is
that the tracer memory accesses might only affect micro architecture caches and buffers in the
processor due to additional memory accesses being performed.

ASSURED D3.4 PU Page 21 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Furthermore, as the tracing is non-intrusive, a malicious adversary, controlling programs in the
normal world, is unaware whether the tracing is currently active or not (thus, bypassing also
the limitations of current techniques based on code instrumentation). Furthermore, the active
tracing method, e.g., CIV, or CFA, cannot be detected by the adversary since it is completely
isolated in the secure world. Indeed, the isolated execution guarantees, offered by the secure
world, allow the invocation of efficient and powerful tracing components. The tracer does not
require changes in programs executing in the normal world. For example, C-FLAT [2] required
intrusively instrumenting programs to log their executed control flows towards support for control
flow attestation. However, with the ASSURED tracer, we aim to track the control-flows in a non-
intrusive manner, thus, achieving high performance with minimal overhead.

Tracing Policy: The tracer maintains an active security policy that should be enforced on the de-
vice. This policy is effectively what triggers the tracing mechanism, that is currently employed, to
detect specific properties depicting the state of the device that need to be attested. As aforemen-
tioned, these properties can either be configuration properties or execution behavioral properties
- depending on the type of threat that we want to detect. The output of the tracing is a trace
report that is passed to the respective attestation Verifier.

As described in D1.2 [9], this tracing policy is part of the optimized set of attestation policies
outputted by the Policy Recommendation Engine [12] based on the identified threats and risk
level for each asset (of the SoS) as well as the entire service graph chain. Essentially, they hold
the type of validation properties that need to be attested during run-time in order for the devices to
produce the necessary security claims to prove their level of trustworthiness. For instance,
the name of a specific software binary, function, or a data variable that needs to be monitored in
terms of control-flow execution or the IDs of any internal process that try to update this specific
variable. All these illustrate possible properties to be traced during run-time (defined as resources
in the MSPL-based attestation policies as defined in D2.2 [12]). For the envisioned use cases,
examples of validation properties to be attested against specific attacks vectors were documented
in D1.3 [11]. This mapping set the scene for the actual experimentation and evaluation scenarios
and metrics defined in D6.1 [18].

All the attestation policies, including the definition of the tracing policies, are securely deployed to
all devices through the ASSURED Blockchain infrastructure [7]. As described in D4.2! [16] and
D4.5 [17], the TPM-Wallet of each device gets notified of a new policy defined, and if it is destined
for this device, then it connects to the Blockchain Peer and makes a request for extracting the
policy. The policy is then interpreted by the Attestation Agent of the device (acting as the Verifier)
and will trigger the Attestation Agent of the Prover device for initiating the tracer for extracting
the requested measurements. This communication is performed through a TLS channel. The
Attestation Agent provides the only interface to the tracer and communicates with the tracing
components over shared memory to pass the tracing policy (type of property to be monitored)
to the secure world. We note an adversary controlling the normal world and compromising this
interface: However, she cannot attack the confidentiality and integrity guarantees of the traces
as the traces are signed with a nonce passed by the Verifier Attestation Agent (extracted through
the execution of the createNonce smart contract function [7]). Thus, the attestation agent may
detect any violation in the traces due to a bad signature or incorrectly signed nonce passed back
to it. The adversary may perform denial-of-service (DoS) attacks, but these are considered out-
of-scope in ASSURED since they can be easily identified if there is no reply to the attestation
request made by the Verifier. Finally, the attack cannot also alter the tracing policy (change the
list of properties to be attested) since the policy is signed by the Verifier’s TPM-based Wallet
(using its Attestation Key).

ASSURED D3.4 PU Page 22 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Tracing for Attestation: Once a security policy is set and a request for initiating a tracing pro-
cess for an attestation report is sent to the tracer, it employs the respective tracing mechanism.
The tracing uses the virtual-to-physical translation capabilities of the tracer to recover information
on the platform based on different tracing data structures. Each data structure is different and the
method to recover information differs depending on the tracing type. In ASSURED, we consider
tracing for CFA, which is described in Chapter 5, and tracing for CIV, which is described in Chap-
ter 6. The generated traces are signed, as explained next, and sent to the attestation Verifiers.
The Verifiers validate both the signature and the traces content. Validating the signature is used
to ensure the traces are trustworthy and come from an authentic tracer, and validating the content
assures the secure state of the device. For example, in the case of CFA, the Verifier validates the
trace does not contain malicious control-flows in the traced program.

Error handling: In case a tracing method fails, either for CIV or CFA, it signals that the device
might have been compromised. Therefore, the Attestation Agent sends a signed failed trace to
the Verifier, together with a memory dump trace to the attack validation component. The latter is
used for performing a more in-depth analysis of the actual attack path that was exploited by an
adversary in order to be able to then identify adequate mitigation measures expressed through
new attestation policies [14].

Recall that the output of the CFA will provide a Boolean decision regarding a systems configu-
ration and execution integrity with respect to the properties that were attested. If the output is
“YES”, then this reflects the appropriate statements on the correct and trustworthy execution of
the deployed devices (Operational Correctness); otherwise, a “NO” attestation report reflects
that a deviation from the normal device behavior was detected and the tracer forwards the mon-
itored system traces (that led to this failed attestation) to the Attack Validation component for
further processing. This in turn will be fed to the Risk Quantification for the re-calculation of the
overall risk and threat vector and for the re-configuration of the security policies.

Towards this direction, the ASSURED Risk Assessment enhancement [15], of the overall RA
framework, will be responsible for performing this re-calculation based on the following tech-
niques: a) the Backwards Chaining to resolve the given set of constraints and b) the Cascading
Effect Analysis.

4.3 Traces Security

As mentioned previously and also elaborated in D3.1 [6], one of the core interactions from the
Tracer is with the TPM-based Wallet of the host device that acts as the root-of-trust. The main
trust requirement that we have for all of the traces (leveraged in any of the ASSURED attestation
enablers) is that they originate from an authentic and valid Tracer that is running in the
secure world of the same device. This is crucial for the correctness of the operation considering
that all traces, sent to the Attestation Agent, must traverse through the normal (insecure) world,
as it has control over communication peripherals such as the network interface card for relaying
them to the Attestation Agent of the Verifier device.

To ensure the trustworthiness of the traces, the tracer must rely on cryptographic operations
such as signatures and the enforcement of key usage policies through the TPM. These
essentially require placing trust in both the tracer, to be able to manage its cryptographic material,
as well as the TPM for safeguarding the use of the Attestation Key to sign only authentic traces.
Recall that, as was described in D3.1 [6], it is very challenging to add the entire Trusted Software
Stack (TSS) (used for interacting with the TPM) as part of the TCB since this would have a

ASSURED D3.4 PU Page 23 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

huge impact on the performance of the entire software stack: As part of the TSS, there are a lot
of interactions with system libraries that will reside outside the TCB and, thus, any exchanged
data would have to be “sanitized” prior to being processed. Furthermore, all traffic is exchanged
through an I2C channel (between the host and the discrete TPM chip) which again needs to run
in the “normal world”.

Thus, we use a traditional TSS execution stack running as part of the “normal world” with the
minimum set of privileges required. Essentially, it means that an adversary (as part of a com-
promised host) may attempt to manipulate the traces during transit from the tracer to the TPM or
even spoof traces, which limits the applicability of the TPM to sign traces on behalf of the tracer.
Compounding this issue, in D3.1 [6], we proposed three distinct solutions to this problem so as to
enable secure and authentic communication between the tracer and the TPM.

We note that all solutions require placing a unique, asymmetric secret key - for the tracer - with
its private part being accessible only to the secure world and public part known to everyone. This
key can be provisioned during the manufacturing process, and securely embedded as part of
the edge device’s hardware, e.g., by placing it in the edge device’s fuses. This is the key used
for the communication between the tracer and the TPM, denoted as tracer key(TRCpriv). It is
used for signing the traces prior to being sent to the TPM. The TPM, during also its certification
to the Privacy CA (as part of the Device Enrolment and Registration phase [16]), creates the
appropriate key usage policies for “binding” the use of the Attestation Key, as a restrictive signing
key, to only sign traces that have in turn been signed with TRCpriv. This allows us to make sure
that the Attestation Agent of the Verifier is dealing with authentic traces since they will have been
signed by the TPM-based Wallet under an Attestation Key (AK) of a TPM with a valid and certified
Endorsement Key (EK).

Traces Security Description
Tracer Signature in this context, we don’t use the tracer key for the communication between

the tracer with the TPM-based Wallet but for the communication between the
tracer (as part of the Prover device) with the Attestation Agent of the Verifier
device. Essentially, we use the tracer key to sign the traces on behalf of the
edge device. The traces are then sent to the attestation Verifier, which can
verify they were signed correctly by the key accessible only to the secure
world. The traces cannot be forged by an adversary as we assume the
adversary has no access to the private part of the secret key. This solution
does not rely on the TPM and places trust that the secret key is never leaked
by software executing in the secure world. However, we note in this case
the public part of TRCpriv needs to be known to all of the edge devices
comprising the service graph chain in a way that the device can verify its
authenticity (aligned with conventional Public-key Infrastructures (PKIs)).

Locality-based Protection To weaken this trust assumption, that the public part of the tracer key needs
to be pre-deployed to all edge devices, in the following two schemes we rely
on the TPM-based Wallet to sign the traces on behalf of the edge device.
However, as aforementioned, in this case, it is important to make sure that
the traces are authentic and not the result of an attack; either by manipulat-
ing the actual traces or spoofing the traces by launching a fake tracer run-
ning as part of the normal world. The first approach leverages one feature
of the TPM platform called locality : If enabled, this flag forces the TPM to
accept commands to be executed only by processes that have higher priv-
ileges running in the secure world. it essentially enforces a sort of access
control to who can interact with the TPM - and these can only be processes
running in the secure world, thus, the tracer.

ASSURED D3.4 PU Page 24 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

As can be seen in the figure below, this approach leverages the UEFI drivers
for the communication between the host device and the TPM so that only
commands with the correct locality (exchanged through the SCL bus) will be
processed by the TPM. As also mentioned in D3.1 [6] this is a rather inter-
esting approach that the consortium is planning to investigate further. How-
ever, there is one caveat to consider: How to make sure that an adversary
is not using tailored interposers for manipulating TPM response packets in
order to trigger parsing bugs in the host side TPM drivers which essentially
can manipulate the locality flag and disable it.

Traces Integrity & Authentica-
tion

In this scheme, the TPM signs the traces for the edge device before they
are sent to the attestation verifier. The challenge in this approach is that
the adversary may control the communication between the tracer and the
TPM. We overcome this challenge by constructing an Attestation Key (AK)
in the TPM that is “binded” to be used for signing only authentic traces that,
in turn, have been signed by the tracer’s TRCpriv. This is essentially a key
usage policy, as described in D3.1 [6], that enables the TPM to release the
AK only when signed traces are received whose signature can be verified
using the known and certifiable public part of the TRCpriv.

Table 4.1: ASSURED Offered Solutions for Traces Security & Authenticity. The current imple-
mentation follows the third approach as is also depicted in D4.2 [16] where the entire protocol
has been fleshed out

4.4 Running Example of the Complete ASSURED Tracing Flow

Having defined all of the functional specifications and internal mode of operation for the AS-
SURED Tracer, in what follows, we give an example of how the Tracer is engaged within AS-
SURED through a concrete instantiation. The detailed sequence of actions executed is depicted
in Figure 4.4. Please note that in the following example we consider a tracing policy for moni-
toring the executional behavior (through control-flow graph traces) of specific software properties
of a device to be leveraged by the ASSURED Control-Flow Attestation mechanism (Chapter 5).
However, the sequence of steps executed and the interactions remain the same irrespective of
the type of attestation task executed - it’s only the type of system properties to be traced that
differ as orchestrated by the Attestation Agent (Section 3.3.2)

We consider a running example of smart connected devices in a manufacturing floor which com-
prise an ecosystem of thousand of Program Logic Controllers (PLCs). Each PLC must attest to
each other in a web of interconnected nodes that propagate trust from edge nodes (usually sen-
sors) to more central management nodes (IoT Gateway). The example follows the functionality
of collision avoidance (between the workers and the robots) in which the PLCs attached to the
robots estimate the location coordinates of the user (based on data they are getting from wear-

ASSURED D3.4 PU Page 25 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Prover Tracer

Get instructions
memory region

CFA attestation,
program ID,
challenge

Main
memory

Memory region
content

Verifier

CFA attestation,
program ID,
challenge

Normal world
of PLC

PLC Hardware IoT Gateway Secure world
of PLC

Memory region
content

Parse instructions,
Filter control flow

addresses

Program addresses
memory region

Parse control flows
& sign trace,

challenge

Signed trace

Signed trace

Figure 4.4: The Sequence of Actions for Control-Flow Tracing

able sensors embodied to the workers). Thus, such data needs to have strong correctness and
integrity guarantees necessitating the continuous attestation of the location estimation function.
The Real Monitoring System (RTM) [10], depending on the status of the deployed wearable sen-
sors, will take action and apply the safety breaks for the robot accordingly. Let a code snippet that
runs in such PLCs contain a buffer overflow vulnerability (Figure 4.5). In this example, the IoT
Gateway is the Prover and the PLC is the Verifier. The PLC must attest to its running integrity be-
fore it is trusted by the IoT Gateway: if the properties received from the attestation are consistent
with the S1, S2, S3 control-flow state sequence, then the attestation process is successful and any
data reported from the PLC (as received by the sensor) is trusted. Any other set of properties that
might result from any deviating control-flow like S1, S2, S4 will be rejected and will flag the PLC as
compromised and untrusted.

The properties should contain just enough details to figure out any control-flow changes. For in-
stance in Figure 4.5, we demonstrate a basic code injection scenario where the control flow is al-
tered. The normal execution flow should start from the function entry (S1 / ReceiveMsg.receive()),

ASSURED D3.4 PU Page 26 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

S1 S2 S3 S4

Normal Execution Path

Altered Execution Path

ReceiveMsg.receive(TOS_MsgPtr msg) {
 radio_message_t *pRP =
 (radio_message_t *) msg data;
 // BUFFER_LENGTH=2 (global var)
 uint8_t received_buff[BUFFER_LENGTH];
 // copy payload to a buffer (vulnerability)
 strcpy(received_buff, pRP data);
 processData(data);
 return msg;
}

Vulnerable Code

ADDRPrev
pRP

received_buf[2]

ADDRReceive

ADDRPrev
pRP
dead

ADDRAttack

Before Overflow After Overflow

Stack frame
of receive

S1

S2
S3

Stack frame
of strcpy

S4

Figure 4.5: Normal and Altered Control Flows

continue to a memory sensitive function (S2 / strcpy()) and finish with a data processing function
(S3 / processData()). In the scenario of code injection, the attacker will overflow the stack frame
up to the point that she can overwrite the return address of the function with the address of S4

(ADDRAttack) which is the function that she will redirect the execution flow to. The system we
propose, stores a healthy image of the control flow in the form of its properties, and afterward,
during the run-time of the application, it is able to detect any changes made from code injection
attacks like the aforementioned one.

As aforementioned, Figure 4.4 depicts the sequence diagram of all actions that take place for cor-
rectly triggering the Tracer to provide the correct measurements for the defined software function
property. As can be seen, the IoT Gateway (as the Verifier) initiates the attestation process, based
on the policy it has read from the Blockchain infrastructure, by sending the type of attestation
task, resources (system properties) to be attested, and the attestation challenge (nonce) to
the Prover PLC device. All this information is packaged in a message that is signed by the AK of
the Verifier’s TPM-based Wallet so as to guarantee its authenticity and timeliness. The nonce is
also extracted through the Blockchain so as to be able to have a random but reproducible nonce
that any entity wanting to verify the correctness of the entire attestation process should be able
to re-create it - this is based on the hash of one transaction block on the ledger [12,19] whose ID
is been kept in the private data collection.

Once the Attestation Agent of the PLC receives the type of attestation task to be executed (CFA in
this context) and the name of the resource to be monitored (receive() function), it then triggers the
Tracer to initiate the tracing. Upon this event, the tracer loads all the instructions from the memory
region and starts parsing the executed low-level instructions so as to be able to extract the actual
control-flow graph. Recall that, as aforementioned, the innovation behind the ASSURED tracer
is on exactly this parsing: how to be able to efficiently (in the order of milliseconds) combine all
the monitored memory information in a readable control-flow graph. Once the control-flow graph
is extracted, it is then signed by the tracer’s symmetric key Ð→ passed to the PLC’s TPM-based
Wallet for verification and signing based on the AK Ð→ Forwarded to the Attestation Agent of the
IoT Gateway Ð→ Verified (in terms of signature) by the TPM-based Wallet Ð→ Verified by the
CFA.

ASSURED D3.4 PU Page 27 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 5

Control-Flow Tracing

5.1 Control-flow Attestation

control-flow Attestation (CFA) is about being able, in a two parties system, to detect any kind of
manipulation of control-flow Graph (CFG), which describes the flow of execution on an applica-
tion.

The verification process consists of two actors:

1. A Verifier, the trusted party, that assures the integrity of the CFG;

2. A Prover, an untrusted party, who provides the traces that have to be verified.

Thus, in ASSURED, each edge device contains a tracer that acts as the Prover and sends control-
flow traces to a Verifier agent (see Figure 5.1). The Verifier utilizes a deep neural network (DNN),
trained on a specific application, to detect incorrect control-flows made by applications. More in
detail, before deploying each introspected application we first trace it to generate benign traces,
which are used to train the DNN in a semi-supervised way. Semi-supervised training is useful as it
does not require malicious traces for training the model and makes the model not attack-specific,
which means that the model will be able to detect any kind. For detecting the attacks we rely on
the fact that the model will perform poorly on malicious data, according to a specific metric (i.e.,
the values for that metric for malicious data will significantly differ from benign data).

After application deployment, the Verifier can detect traces that differ significantly from the train-
ing data and are therefore flagged as malicious traces. Using only benign traces for the training,
in addition to a scheme that automatically collects benign traces, e.g., by using techniques like
fuzzing, allows the system to adapt dynamically to changes of the application and automatically
train for new applications. However, it is important to notice that the Verifier is reliable and re-
sponsible only for a specific application at a specific fixed version, and in any case of update, it
has to be retrained, as the control-flow graph of the application may be changed.

In ASSURED, the attestation process is either initiated by a Prover that wants to show its trustwor-
thiness to other components or is initiated by the attestation toolkit based on the defined policies,
e.g., if a new device joins the system. After the control-flow trace is evaluated, the Verifier sends
the attestation result to the TPM wallet.

ASSURED D3.4 PU Page 28 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Prover Verifier

Valid
signature?

Valid control
flow?

Yes

Fail

Fail

Success

Request CFATrace for program P's
control flow

nonce,
program P

Sign trace & nonce

Figure 5.1: control-flow attestation flow.

5.2 CFA Tracing Building Blocks

5.2.1 Program Composition

A compiled program’s code can be represented by its Control-Flow Graph (CFG), which encap-
sulates all possible program executions by modeling the legal control-flow between all of the
program’s statements. However, since not all statements affect the control flow, we typically frac-
tionate the statements into maximal-length sequences of branchless statements that ultimately
end in a branch, jump, or predicated operation. We denote each such sequence as a basic block
(BBL) and have the CFG model the control-flow only between program BBLs. Let CFG = (N,E)
denote a directed graph, where each node ni ∈ N corresponds to one BBL, and each edge e =
(ni, nj) ∈ E denotes a possible transfer of control from ni to nj . We refer to edges corresponding
to (direct and indirect) jumps and calls as forward edges and returns as back edges. We further
label any node ni a final node (n◀) if it has no reachable nodes and an entry node (n▷) if it is
unreachable. Finally, we consider any continuous sequence of edges a legal execution path if it
connects a node n▷ to n◀ (denoted n▷ ↝ n◀) in the CFG.

More formally, the CFG is a directed graph, G = (N,E), where each node n ∈ N corresponds to
a program statement or BBL, and each edge e = (ni, nj) ∈ E corresponds to a possible transfer of
control from block ni to block nj . We refer to edges corresponding to jumps (direct and indirect)
and function calls as forward edges, and function returns as back edges. We call any node n
a final node (n◀) if it has no reachable nodes and an entry node (n▷) if it is unreachable. Any
consecutive sequence of edges that connect a node n▷ to n◀ (denoted n▷ ↝ n◀) and comprises
exclusively of edges that exist in a CFG is considered a legal execution path.

ASSURED D3.4 PU Page 29 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

if x == y
 then data = temperature()
 else data = humidity()
broadcast(data)
...
temperature:
 while i < z
 stmt
 return temperature
...
humidity: ...statements...
broadcast: ...statements...

1
2
3
4

5
6
7

8

1

9

2 3

4

5

6

X

attacker-injected codeX

9
10

Memory layout of program Program Control-Flow
Graph (CFG)

path with branch not-taken

path with branch taken

control-flow a�ack path

impure DOP vulnerability

control-flow vulnerability

pure DOP vulnerability

1

2

5

6

7

4

9

8

9

4

8

3

1

2

5

7

Figure 5.2: Abstract view of a program’s CFG and threats.

5.2.2 Runtime Attacks

We continue with a description of major runtime attack classes that can induce harmful behavior
by exploiting subtle software vulnerabilities to corrupt a program’s control and data planes (based
on the analysis already performed in D1.3 [11]). As a running example, consider the simple
program in Fig. 5.2.

Control-based attacks. The most common attacks target a program’s control plane to exe-
cute unintended code by explicitly diverting its execution path. There are essentially two variants:
code injection and code-reuse attacks. With code injection, an adversary crafts and injects a
payload into a device’s memory and redirects a benign program’s control flow to execute the
payload [23, 44]. As an example, consider that in Fig. 5.2 an adversary has injected node nX

and diverted the program’s control-flow from (n3, n8) to (n3, nX), resulting in the execution of
code in nX instead of n8. However, being an early attacking methodology, code injection is
easily defeated using common mechanisms such as Data-Execution Prevention (DEP), where
executable memory regions cannot be written to during runtime. For the latter variant, however,
it gets more difficult. Without injecting code, code-reuse attacks reuse existing program code to
achieve some unintended behavior–using control plane maneuvers such as Return-Oriented Pro-
gramming (ROP) [40], Jump-Oriented Programming (JOP) [3], and Counterfeit Object-Oriented
Programming (COOP) [39].

With ROP and JOP, an adversary fabricates a new program by stitching together a chain of benign
pieces of existing code (called gadgets) that end in either function returns (ROP) or indirect jumps
or function calls (JOP). The chain is then written into memory (e.g., through a stack overflow
vulnerability), where, once it is triggered (e.g., from replacing a function’s return address with
that of the first gadget), the gadgets execute in sequence. For example, in Fig. 5.2, the adversary

ASSURED D3.4 PU Page 30 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

launches a simple ROP attack which diverts the control-flow from (n3, n8) to (n3, n2) to effectively
execute code in the other branch.

Non-control-data attacks. Another class of attacks exists, called non-control-data attacks,
which corrupt data variables to make programs yield unexpected outputs or indirectly drive pro-
gram execution down unexpected or unauthorized paths. The attacking methodology behind
non-control-data attacks is the application of Data-Oriented Programming (DOP) [4,27] which we
can call impure or pure, depending on whether the program execution path is influenced (impure)
or only data variables are altered with no effect on the path (pure). However, due to the difficulty
of verifying a program’s data flow at the Verifier, CFA schemes generally disregard data-oriented
attacks altogether or assume that verification is done locally at the Prover. This is something that
will be investigated in the second release of the ASSURED control-flow attestation enabler.

5.3 Tracing Method

The ASSURED methodology for extracting such control-flow traces can be seen in Figure 5.3.
Recall that existing software-only approaches such as C-FLAT [2] require changing the original
program via an instrumentation framework to collect information on retired control-flows. Specif-
ically, Figure 5.3 depicts a set of assembly instructions, which are part of the main() function.
These instruction includes memory access instructions such as mov, ldr and str, branch in-
structions such as b.le and b, and function invocations such as bl foo which invokes the foo()

function (excluded from the figure for space considerations). To execute this program, the OS
loads it into the main memory. As part of the process creation, the operating system populates
a page table containing the virtual-to-physical translations of this program’s pages. The tracer
can access the main memory and use stored data on both the entire system and specifically
for this program that is populated by the operating system and additional components such as
ARM Coresight tracing to recover information needed by the attestation Verifiers. The full tracing
details are described in the next chapters.

In contrast, in ASSURED, using a tracer that introspects memory to recover this information has
several advantages. First, there is no need for program instrumentation, which is not always
possible for different types of deployment environments. Second, the instrumentation may hinder
performance as it intrusively changes the program behavior. For example, C-FLAT instrumen-
tation interposed every control-flow instruction to transition into the secure world to trace the
retired control-flow gadget and return to the normal world to continue the program execution.
In ASSURED, we envision the tracer would continuously run and introspect normal world
programs such that it will not impact performance. Finally, such instrumentation calls may
be skipped due to hijack attacks, such as ROP and JOP as described in Section 5.2.2, and be-
fore the control-flow attestation takes place to detect them. With a tracer, skipping tracing is not
possible.

Removing the need for instrumentation can be achieved via specialized hardware. For example,
LO-FAT [21] required custom processors that track control-flows. In ASSURED, we envision
supporting control-flow attestation on commodity processors such as ARM and RISC-V, which
are popularly used for embedded devices. We hope this would enable mass usage as this is one
of the most prominent types of micro-architectures for commodity embedded devices. We note
that RISC-V processors do not include a Trustzone architecture and therefore do not support a
secure and normal world separation. However, RISC-V processors include another form of a
trusted execution environment, e.g., Keystone [30], which can be used by future versions of the
tracer to achieve an isolated execution environment.

ASSURED D3.4 PU Page 31 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Physical memory

Page
table
pages

Code
pages

Traced
Program

main:
stp x29, x30, [sp, #-32]!
mov x29, sp
str w0, [sp, #28]
str x1, [sp, #16]
ldr w0, [sp, #28]
cmp w0, #0x1
b.le 87c <main+0x30>
ldr x0, [sp, #16]
add x0, x0, #0x8
ldr x0, [x0]
bl 828 <foo>
b 888 <main+0x3c>
adrp x0, 0 <_init-0x640>
add x0, x0, #0x960
bl 6d0 <puts@plt>
mov w0, #0x0
ldp x29, x30, [sp], #32
ret

Tracer

Tracing
data

structures

Control flow
tracing

Figure 5.3: Overview of CFA tracing.

In ASSURED, the tracer does not rely on instrumentation and instead traces programs
control-flow via the following three methods.

Software Stack Trace Reconstruction. We employ state-of-the-art forensics techniques to re-
cover stack traces of invoked functions using register information stored in the physical mem-
ory [34,42]. We assume that Linux is used by the normal world in edge devices. The Linux kernel
operates such that it stores registered information at the bottom of the kernel stack on privileged
mode switches; for instance, due to system calls invocation. The user context (registers values) is
required by the operating system to correctly restore the registers when returning to the program
that executes in the unprivileged mode. The kernel also stores the user program stack pointer
register as one of the saved register values. The stack pointer register points to the top of the
stack and matches the latest user program function that was invoked. To recover the full stack
trace the tracer can traverse the user stack from top to bottom using the frame pointers. Specif-
ically, the calling convention in Linux stores the frame pointer before the return address on the
stack, and potential argument if used by the function. The frame pointer points to the previous
frame pointer and so forth up to the bottom of the stack. To conclude, the tracer identifies the
frame pointer and uses it to traverse the entire user stack, recovering all the functions called by
the user.

We note that this approach does not require any special hardware support. However, there are

ASSURED D3.4 PU Page 32 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Validation
entity

Format Description

CFA [(symbol 0, library), ... (symbol n,
library)]

List of tuples corresponding to visited
symbols and the library or binary they
are part of.

Table 5.1: CFA traces format.

two main challenges for constructing an accurate control-flow trace. First, the control-flows
only include functions. much like a stack trace obtained through a debugger. However, an
adversary may also attempt to change programs execution to different basic blocks. For example,
execute an else statement block instead of an if statement block in the C language. The second
limitation of this approach is that mode switches between user programs and the kernel may
not be frequent enough, which would cause some control-flows to not be detected at all. For
example, short-lived functions would be missed from the control-flow traces created. Moreover, if
the program being traced continues to execute in another core in the normal world, it may change
the values of the registers, causing the tracer to read stale values and construct incorrect traces.
Therefore, we also consider using more intrusive software-based tracing and non-intrusive
hardware-based tracing as discussed next.

Operating system-assisted software tracing. For platforms that do not support the Coresight
technology, we defer the tracing to using the ptrace Linux capability. ptrace provides a mech-
anism for a tracer to observe and control the execution of another process while examining and
changing the process’s memory and registers. Traditionally, ptrace is primarily used to imple-
ment breakpoint debugging and system call tracing. However, in ASSURED, we observe that it
can also be used to track the control-flows of traced programs. Specifically, it allows the tracer to
interrupt the traced program in instruction-level granularity. Thus, the tracer can read the instruc-
tions of the program, and for control-flow instructions, it would capture the destination address
and generate a complete control-flow trace. Note, this method, unlike using Coresight impacts
the executing program performance due to the operating system generating interrupts for the pro-
gram. However, we note that this method does not require intrusive changes to the program, for
example through instrumentation like prior work did [2]. To reduce the performance impact when
the Coresight hardware is available we envision the tracer would use the hardware-assisted trac-
ing method, which is described next.

Hardware-assisted software tracing. We envision using the ARM Coresight tracing technology
to configure the processor to always emit branch instructions to a circular buffer in a predefined
physical memory location known to the ASSURED tracer. To recover the control-flow graph of a
program, The ASSURED tracer would continuously introspect this buffer and recover the branch
instructions executed by the processor. The ASSURED tracer would infer the branches that
are corresponding to the program to be traced for the control-flow attestation and using symbol
information it has on the binary and libraries of the program recover the functions and basic blocks
that were executed during the program run. Using this traced information the ASSURED tracer
would emit the control-flow graph to a signed trace that would be used by the attestation Verifier.

To conclude, in ASSURED we are envisioning the usage of hardware-assisted tracing to support
the CFA mechanism. In the context of WP6, we will evaluate the use cases with the different
tracing methods described and analyze programs’ latency with and without tracing enabled. This
would allow us to choose the best method according to the available hardware for the different
considered use case applications.

ASSURED D3.4 PU Page 33 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

main foo bar baz

Figure 5.4: control-flow graph of a simplified program

5.4 Trace Output

The CFA traces generated by the tracer follows the format depicted in Table 5.1. Specifically,
each trace contains an ordered sequence of symbols and the libraries or binary they are part of.
This sequence represents the current control-flow graph the application is using. For example,
consider the following program, which is depicted in Listing 5.1. For this program, we illustrate
the control-flow graph in Figure 5.4.
int not_called () {

system("/bin/bash");

}

int baz(int i) {

return foo(i-1);

}

int bar(int i) {

return baz(i);

}

int foo(int i) {

if (i ==0) {

return 0;

}

return bar(i)+1;

}

int main(int argc , char* argv []) {

char buffer[100];

if (argc > 1) {

strcpy(buffer , argv[1]);

}

return foo(10);

}

Listing 5.1: Sample program to demonstrate how control-flow tracing can be used to detect
malicious behavior.

Next, we present a benign trace captured by the tracer. The trace represents a valid control flow
of the program.

{[

ASSURED D3.4 PU Page 34 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

{
"bar+0x14": "test"

},
{

"foo+0x28": "test"

},
{

"baz+0x18": "test"

},
{

"bar+0x14": "test"

},
{

"foo+0x28": "test"

},
{

"main": "test"

}
]}

Unfortunately, the program depicted in Listing 5.1 contains a buffer overflow vulnerability. The
main() function uses an argument passed to it and copies it to a buffer that is 100 bytes in size
and is allocated on the stack. An attacker can use this to trigger a return-oriented programming
(ROP) attack. In a nutshell, strcpy() would overrun the buffer and corrupt values on the stack.
Careful construction of the argument value can cause the return address from the main function
to be altered to a different location. For example, to the not called() function, which gives
an attacker executable privileges. We note that this is a simple example, yet, ROP attacks are
known to use similar buffer overflow vulnerabilities to gain similar general execution capabilities
on platforms.

Fortunately, a trace under an attack, which we refer to as a malicious trace would contain the
not called() function as illustrated next. Such a trace file differs from the benign traces that
represent correct execution and valid control-flows of the program. Thus, a control-flow Verifier
can use the malicious trace to detect an attack.

{[
{

"not_called": "test"

},
{

"baz+0x18": "test"

},
{

"bar+0x14": "test"

},
{

"foo+0x28": "test"

},
{

"main": "test"

}
]}

ASSURED D3.4 PU Page 35 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

5.5 Verifier Interface

The Verifier communicates with the tracer through the ASSURED Attestation Agent interface that
is essentially the “bridging component” that extracts the signed traces from the TPM-based Wallet
(after received by the tracer). The communication between the Verifier and the Attestation Agent
is based on a web service exposing a REST API interface in the tracer part in the normal world.
The web service allows a remote Verifier to request traces generation and in turn, the tracer
computes the control-flow traces and signs them.

Thus, in the overall security pipeline of ASSURED (Figure 3.1), the Verifier will initiate the remote
attestation process based on the attestation policy read from the Blockchain infrastructure [17].
This policy will be interpreted by the Attestation Agent of the Verifier who will extract the type of
attestation task to be executed, the exact software properties to be traced as well as the nonce
to be sent to the Attestation Agent of the Prover for initiating the attestation process (attestation
challenge). This is for allowing the Prover to verify that this attestation request originates from a
valid Verifier device.

Assuming the device can verify the signature, the device instructs the trusted tracer to trace
the properties defined, obtaining the trace-set N which is to be signed by the Attestation Key. As
described in D4.2 [16], this allows the TPM-based Wallet to safeguard the usage of the AK: Recall
that to use the attestation key, an authorized policy by the SCB must be satisfied. This allows the
usage of this restrictive key to sign the traces if and only the device is at an expected configuration
state based on what was verified during the device registration and enrollment phase. This allows
to essentially perform, first, a local attestation on the correct configuration state and then continue
with the execution of the control-flow attestation, thus, enabling stronger assurance claims.

After receiving a trace via the web service interface, the Verifier first validates the traces signa-
tures (through its TPM-based Wallet) as described in Section 4.3. More specifically, the TPM-
based Wallet checks the validity of the signature which implies both the correct configuration
state of the Prover and the authenticity of the traces (originated by a valid tracer). If the signature
verification fails an error is reported and it is detected as an attack. If not, the Verifier moves on
to verify the trace report. The control-flow verification entails comparing the generated control-
flow with the valid control-flows that the Verifier was trained with [8]. Similarly to verifying the
signatures, if the control-flow verification fails it is detected as an attack and reported.

The process of verification starts after the traces are received. This process starts with the
preprocessing phase, which takes care of preparing the traces for the Deep Learning Model
which is responsible for the final verification. The model that is used for attesting traces has been
pre-trained on benign traces so that it will be able to recognize all the possible malicious trace
states. Then, according to a defined metric, the model will perform poorly on malicious data and
optimally on benign data. According to these scores, the system is able to detect whether the
traces received are malicious or not.

ASSURED D3.4 PU Page 36 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 6

Configuration Integrity Tracing

6.1 Configuration Integrity Verification

Besides the tracing of execution behavioral measurements, as described in D3.2 [8], ASSURED
is also providing attestation enablers capable of verifying the correct configuration of a device
through its entire lifecycle [20,29]

The goal of the Configuration Integrity Verification (CIV) [8, 29] scheme is to enable the verifi-
cation of the correct configuration of the target: the loaded binaries and libraries in the system.
More specifically, the goal is to support the creation of trust-aware service graph chains with
verifiable evidence on the integrity assurance and configuration correctness of all com-
prised devices. It is the first step towards a new line of security mechanisms that enables the
provision of Configuration Integrity Verification, during both load- and run-time, by providing fine-
grained measurements in supporting supply chain trust decisions, thus, allowing for a much more
effective verification towards building a global picture of the entire service graph integrity.

CIV is building on the Integrity Measurement Architecture (IMA) and EVM features of the Linux
kernel and leverages the ASSURED tracer for being able to monitor the integrity of a loaded
binary. It monitors the information flows between TCB processes and those outside the TCB
and can prevent violations or record them in the TPM-protected IMA measurement list. CIV
introduces a concept of digest lists to limit the reporting of measured software only to the case
when that software is unknown (not added to the digest list). This approach ensures predictable
PCR values and reduced usage of the TPM and, consequently, reduced performance impact.
It also introduces Simple Remote Attestation (Simple RA), to minimize the effort of integrating
Remote Attestation in existing distributed architectures, by using implicit attestation over existing
secure protocols (e.g. TLS), while addressing the lack of dedicated standard attestation protocols
and thus mitigating interoperability concerns.

6.2 Tracing Method

A high-level overview of the CIV tracing method is depicted in Figure 6.2. The tracer generates
traces that represent all the binaries and their dependent libraries that are loaded in the memory
of the edge device. The traces, in turn, are used by a Verifier to detect any configuration violation
from the expected valid configuration state. This proves for example that an adversary did not
load an invalid program or changed any of the code pages of deployed programs as meant by the
end-user.

ASSURED D3.4 PU Page 37 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Figure 6.1: CIV Architecture

To support CIV, the tracer measures all the code pages belonging to a given program, which
includes the program binary and associated libraries. The tracer computes the measurement
based on a well-established cryptographic hash function: SHA-256. The tracer iterates over all
active processes on the device and infers the in-memory addresses of all the code pages belong-
ing to the program and its dependent libraries. Tracking the processes is explained in Chapter 4.
To infer the pages’ addresses, the tracer utilizes knowledge of the Linux operating system’s virtual
memory management of processes. Specifically, the Linux operating system stores information
about the memory regions of a process in the per-process structure task struct in the mm field.
The tracer iterates over all the virtual memory areas stored in the mm field, which is a structure
on its own. These areas contain the base and end addresses of contiguous virtual addresses
and their backing file. For anonymous memory, the file does not exist, but for libraries and pro-
grams, the file contains the exact path of the in-storage file from which the contents are loaded
into memory. Thus, the tracer can translate the virtual-to-physical addresses of all these regions
and compute the hash representing each page. Effectively, for the CIV attestation, the tracer acts
as the Prover. The corresponding Verifier gets the signed trace and validates the measurement
matches a pre-established measurement value for the programs and their dependent libraries
that were deployed on the device.

6.3 Trace Output

The CIV traces generated by the tracer follows the format depicted in Table 6.1. For example,
the following sequence represents the configuration of an edge device with a design, as depicted
in Figure 6.3. Specifically, the device contains two libraries: libc-2.27.so with a size of three
pages, and ld-2.27.so with a size of a single page. The tracer infers the location of each page
loaded in memory for the libraries, reads the content of the page, and computes a hash of 64 bytes
using the SHA-256 algorithm. The produced trace thus contains a set of hashes representing the

ASSURED D3.4 PU Page 38 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Physical memory

Page
table
pages

Program
0 pages

Program 0

Program 0
linux-vdso.so.1
libc.so.6
ld-linux-aarch64.so.1

Tracer

Tracing
data

structures

Program N
linux-vdso.so.1
libdl.so.2
libz.so.1
libpthread.so.0

Program N

Program
N pages

libdl.so.2
pages

Configuration
integrity tracing

Figure 6.2: Overview of CIV Tracing

in-memory configuration of the device as follows.

{[
{

"name": "libc -2.27.so",

"hashes" : [

{ "0" : "0721718c63188fe6ed74462222b4af4177e518e3ac2457cf9d5570137de77

e0a" },
{ "1" : "f7a3bcec228f707044edf6d3be796adccd5f3c8f993f41b036beb10fd69d7

d75" },
{ "2" : "16b1f2de728277b5b92a10c7a78e9fa347f42cca84195fc7fa584b99f91

def0d" },
]

},
{
"name" : "ld-2.27.so",

"hashes" : [

{ "0" : "ad7facb2586fc6e966c004d7d1d16b024f5805ff7cb47c7a85dabd8b48892

ca7" },
]

}
]}

ASSURED D3.4 PU Page 39 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Validation
entity

Format Description

CIV
[lib i:
[hash, [invalid byte 0,..,
invalid byte n]]

List binaries and libraries. Each
list node is a tuple with the binary
name, its corresponding measured
hash value followed by a list of invalid
bytes that are zeroed out before the
measurement.

Table 6.1: CIV traces format.

....

libc-2.27.solibc-2.27.so

....

ld-2.27.so

Physical memory

Page 0 Page 2 Page 1 Page 0

Figure 6.3: Exemplary Device Configuration with Libraries loaded in Physical Memory

6.4 Verifier Interface

The Verifier communicates with the tracer through the Attestation Agent interface following a
similar flow as the one presented in the context of CFA (Section 5.5). This communication is
based on a Unix socket. That is, similarly to the CFA tracing, the tracer maintains a service
based on the socket in the normal world. The service lets the CIV Verifier (through its Attestation
Agent) request CIV traces generation and in turn, the Prover tracer computes the hashes over all
loaded libraries and programs in the edge device. Finally, the tracer signs the generated traces
and sends them to the Prover’s TPM-based Wallet for verification and signing with the produced
AK prior to being forwarded to the TPM-based Wallet of the Verifier.

After receiving a trace over the Unix socket, the Verifier first validates the traces signatures as
described in Chapter 4. If the signature verification fails an error is reported and it is detected
as an attack. If not, the Verifier moves on the verify the trace report. For the CIV this entails
comparing each page hash with the expected valid hash of the corresponding library, or program
that was scheduled to be deployed in the device. Similar to verifying the signatures, if the config-
uration verification fails it is detected as an attack and reported through the ASSURED backend
services.

ASSURED D3.4 PU Page 40 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 7

Attack Validation Tracing

The main objective behind the attack validation component is to validate the cause of an already
detected attack (based on a failed attestation result) on an edge device by subjecting attacks on
virtual counterparts and employing security forensics so as to be able to identify the exact attack
path that was exploited by the adversary. Validating the attack refers to indicating which
component or sub-system is affected by the attack, and how the attack affects the overall
behavior of the system.

More specifically, during run-time, the low-level properties, that will be attested by the ASSURED
attestation agents, and the Attestation Report will contain the final verdict. In case of failure,
a more in-depth investigation of the systems behaviour is needed in order to to identify the
exact attack vector and for the re-configuration of the security policies. Towards this direc-
tion, we have proposed a novel solution based on the use of security forensics [14]: The Attack
Validation component comprises of a virtual representation of all deployed physical devices,
each one of which receives (in real-time) the monitored system properties as extracted by
the ASSURED software-based Tracer loaded in each device. The Tracer essentially outputs
the measurements (for the properties of interest) that, in the case of a failed attestation report,
can be leveraged by the Attack Validation component for performing detailed concolic testing
and fuzzing mechanisms in order to identify the exact attack path that was exploited by an at-
tacker. This, in turn, can lead to the identification of zero-day exploits that when given as input to
the RA Engine it can re-calculate the overall risk graph for then been able to identify the appro-
priate mitigation measures in order to upkeep the desired assurance and the required details for
post-attack investigation.

Projecting attacks on virtual counterparts allows testing various scenarios without any damage
to equipment, devices or systems also allows greater observability, , for the sake of aggregat-
ing monitoring data and generating a composite view of complex installations. In ASSURED,
the Attack Validation component considers vulnerabilities that compromise the behavior of Pro-
grammable Logic Controllers (PLCs) and Industrial Control PCs (IPCs). For example, vulnerabil-
ities in the configuration, due to invalid inputs, and vulnerabilities in the code.

The virtual PLCs and IPCs form the behavioral representation of an actual system. The Attack
Validation component uses the different values acquired either by the tracer or the fuzzing engine
to simulate a complete process execution of the PLCs and IPCs. The resulting outputs are read
and compared with the expected values as described in a system description. A mismatch of an
expected value with a traced value is used to detect an attack.

The system description represents the behavior description of the system provided by the system
administrator. Upon detection of an intrusion, a root cause analysis is performed to find the

ASSURED D3.4 PU Page 41 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Validation
entity

Format Description

Attack valida-
tion

[name, type, value] List of traced variables. Each entry
contains the variable name, the vari-
able type, and the traced value

Table 7.1: Attack validation traces format.

source of compromise in the system. The detection and root cause analysis components do not
only find potential vulnerabilities in the systems but also forecast the effect the aforementioned
vulnerabilities have on the entire process.

7.1 Tracing Method

As mentioned, the attack validation component relies on the tracer to track a configurable set of
variables’ values to match them with pre-configured valid values, which allows attacks detection
and vulnerabilities discovery. To that end, the tracer utilizes the symbols and debug information
of the applications executing in the host device.

More specifically, the tracer reads the debug data structures in memory, such as ELF symbol table
sections to infer the existing variables, and their addresses in the virtual memory. The tracer can
then employ its software virtual-to-physical address translation logic to acquire the physical
addresses. Upon attack detection, the tracer reads the content of the corresponding memory
region for the variable. Furthermore, based on the variable type, the tracer can reconstruct the
specific value of the variable according to the actual raw bytes read from the memory region.

Optional - program state tracing: In ASSURED, we also consider leveraging the Attack Valida-
tion component to detect code-level vulnerabilities, and not only behavioral vulnerabilities related
to the end to end program logic. To that end, the component must know of the latest state of
the program when an attack occurred. Using the program state information, we can synthetically
emulate this state to recover information on the vulnerability itself that caused the program to
reach this invalid state.

For the second release of the tracer and Attack Validation component, where code analysis will
be considered, an optional improvement is to include tracing of the program state after attacks
are detected. This program state would include data the Attack Validation component con-
siders as important to simulate attacks. For example, the current active stack frames, the
process identifier, the instruction pointer, etc. This this pertains to the resilience and mitigation
planning as a complementary service of the overall ASSURED Attack Validation component: It
may also request more detailed traces (including additional information on the internal memory
view of the target device), thus, allowing for a multi-level detailed tracing.

7.2 Trace Output

The traces generated for the Attack Validation component are in a JSON format, with the contents
structure being depicted in Table 7.1. Specifically, the tracer monitors the values of variables after
an incident is detected to be passed to the attack validation component. The exact variables to
be traced are stated in a system description map.

ASSURED D3.4 PU Page 42 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

For example, consider the following system description map.

components:

- ref: &p_gain_var

name: "controller p gain variable"

kind: "var"

bounds:

physical:

lower: "0"

upper: "10"

type: "double"

unit: ""

operational:

lower: "0"

upper: "10"

type: "double"

unit: ""

children:

- ref: &i_gain_var

name: "controller i gain variable"

kind: "var"

bounds:

physical:

lower: "0"

upper: "10"

type: "double"

unit: ""

operational:

lower: "0"

upper: "10"

type: "double"

unit: ""

children:

...

An example for an output trace corresponding to the above system description map is the follow-
ing.

[

{ "controller p gain variable", "double", 5.0 },
{ "controller i gain variable", "double", 3.1 },

]

7.3 Tracer Interface

The Attack Validation component is triggered by the tracer-generated outputs [14]. Specifically,
the tracer periodically collects variable values according to the specification available in the sys-
tem description and publishes this information to the attack validation component via a Kafka
broker.

The communication takes place through Apache Kafka which is an open-source distributed event
streaming framework that is used by thousands of companies for high-performance data pipelines,
streaming analytics, data integration, and mission-critical applications. Internally, Kafka stores

ASSURED D3.4 PU Page 43 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

key-value messages sent by processes. The data can be configured to be partitioned into differ-
ent partitions within different topics. Kafka runs on a cluster of one or more servers, which are
also referred to as brokers. Kafka distributes the partitions of all topics across all the brokers.
Additionally, partitions are replicated to multiple brokers. This architecture allows Kafka to deliver
massive streams of messages in a fault-tolerant fashion.

More specifically, Attack Validation receives traces (during run-time), from the physical device,
through the ASURED software-based Tracer that is responsible for monitoring and extracting all
the necessary system measurements (for the properties of interest) to be used by the attesta-
tion enablers. This tracing is a continuous process and in the case of a failed attestation report,
then the output of the Tracer is sent to the Attack Validation component for further processing;
i.e., identification of possible attack path by generating mutation of the received run-time traces.
More detailed traces can also be requested if needed. The Attack Validation provides multiple
interfaces to generate different mutation values for acquired traces using “Mutational fuzzing” for
identifying different attack paths (a priori) by injecting these mutated traces into Virtual PLCs and
IPCs where they comprise the behavioral equivalent of a physical system. Later, after the execu-
tion of the program logic in Virtual PLCs and IPCs, the system states such as input, output, and
process image table are read. The image table is a memory location (Array or list) containing
values of different state variables. After reading system states, this is compared with the states
described in System Description profiles, defined by the System Administrator, to detect any pos-
sible violation. System description profiles represent the behavior logic of the system containing
information such as state variables and their data type and operation and physical limits. On
detecting such violations, an analysis is made to find the attack path. This Virtual Host-based
Intrusion Detection and Analysis cannot only find potential vulnerabilities in the systems but also
project their impact on the entire process (of the service graph chain) illustrating how such shallow
and deeper vulnerabilities can affect the level of trustworthiness of the overall ecosystem.

ASSURED D3.4 PU Page 44 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 8

Current Status and Future Plans

8.1 Current Implementation Status & Research Plan towards
Second Release

The implementation and setup details of the ASSURED Tracer can be found on the project’s
Github repository [5]. In what follows, we describe the current implementation status and depict
the features that we intend to continue looking into towards the next release in order to improve
the tracing capabilities and support for the ASSURED ecosystem and the envisioned use cases.

8.1.1 Current Implementation Status

At the time of writing this deliverable, the tracer implementation closely follows the architecture
described in Chapter 4. Specifically, the tracer is partitioned into two components, a process
that is awaiting requests from the attestation agents in the normal world and a secure world
service. Both software communicate over a shared memory in the normal world, acting as an
event queue. That is, requests are published on the queue, allowing the secure world to process
them, generate traces according to the request and return the response (signed traces) over the
same shared memory.

The current prototype currently supports the control-flow tracing as described in Chapter 5 based
on ptrace. We plan to look into the more efficient Coresight tracing in the next release. Moreover,
the prototype supports the CIV tracing as described in Chapter 6. Please note, however, the
prototype does not yet support traces signatures. We plan to investigate the different signature
schemes as part of the next release as described next.

To simplify the tracer integration process, the current prototype supports three modes of opera-
tion. First, the one described in Chapter 4 running the tracer in Trustzone via OP-TEE. Second,
running the tracer as a standard Linux process, which enables running the tracer in devices that
do not support the Trustzone architecture. Finally, the tracer can run in a virtualized environment
via QEMU, which emulates a processor that supports Trustzone. We deploy the tracer prototype
in the secure world as traditionally. Yet, instead of tracing programs running in the virtualized
normal world, it traces programs running in the bare-metal device by integrating a communication
channel between the virtualized environment and the bare-metal environment.

ASSURED D3.4 PU Page 45 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

8.1.2 Research Plan towards Second Release

The following features are already planned to be integrated with the second release of the AS-
SURED Tracer:

Attack Validation Tracing: We plan to support the variable tracing as described in Chapter 7,
and optionally to trace the program state if the attack validation component would enable code-
level vulnerabilities analysis.

Coresight-assisted Tracing: We plan to support the Coresight-assisted tracing for CFA as
described in Chapter 5. We plan to further evaluate the tradeoff of the different control-flow ac-
quisition methods, including the performance impact on programs and the integration challenges.

Traces security: We plan to evaluate the different signature schemes as described in Chapter 4.
Specifically, we envision evaluating both the performance impact due to passing traces to the
TPM, the overall throughput of signing traces via the TPM vs. the device’s processor.

8.2 Discussion

This section provides a discussion of our proposed “hybrid” type of tracing solution while posing
some open issues that still need to be considered if remote attestation is to reach its full potential,
and that we will also investigate in the context of the ASSURED tracing capabilities. Program
tracing solutions can sufficiently record run-time information about a program’s execution and en-
able flexible and powerful offline analysis. Therefore, they have become fundamental techniques
extensively leveraged in software analysis applications and forensics. Those techniques aim to
the generation of the detailed system monitoring traces through static program binary testing.
However, such offline and rigid forensics analysis methods set several barriers, as they mainly
have to ensure that the produced tracing output has not been tampered with, while the detection
of events takes place after the occurrence of the incident. Thus, we need to investigate and aim
for online flexible tracing solutions.

Although detailed tracing and introspection can be resource-intensive, it is required for proper and
thorough attestation schemes. Thus, we argue that a practical way forward is basically to pro-
vide a multi-level detail tracing mechanism that can actually incorporate different types of tracing
mechanisms with varying levels of granularity in order to provide much higher scalability. How-
ever, performance still remains an issue as it is directly linked to the complexity of the codebase
traced.

Thus, one could argue that the performance of the tracer is crucial to the security of the
edge device. Consider for instance tracing features that are able to provide measurements
way after an incident has occurred. Such a tracer would provide traces at a slow rate, which in
turn would affect the number of attestation requests being served. A quick attacker may take
advantage of such a gap to perform the attacks in between each tracing cycle. Therefore, in
ASSURED, we aim to optimize the tracer for the different tracing methods supported and provide
seamless integration with programs running on the edge devices.

Unfortunately, however, the tracing performance depends on the complexity of the loaded
binaries. That is, the more control-flows that are part of a program require larger traces con-
struction, and more data points (control-flow events) to trace and decode. We note that in WP6 in
ASSURED we plan to evaluate use cases with different levels of complexity. Specifically, the ap-
plications evaluated would include a diverse set of control-flows. Tracing each application would

ASSURED D3.4 PU Page 46 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

provide a tracing latency, which would enable us to better understand the relation between the
tracer performance and the complexity level of the application.

Ultimately, building an efficient tracer is an open research problem. Prior work aimed to reduce
tracing latency by utilizing hardware-based tracers [21,45]. However, hardware alone is inflexible,
which limits such tracers’ capabilities. For example, tracing only for control-flows and not for
configuration integrity.

In ASSURED, we aim to utilize hardware acceleration in commodity processors for control-
flow tracing (via ARM Coresight). However, we use a software-based tracer that controls
hardware acceleration to optimize tracing performance where possible and use the soft-
ware for the flexibility of acquiring traces for different properties representing the system.

ASSURED D3.4 PU Page 47 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

Chapter 9

Conclusion

This deliverable provides a detailed description of the ASSURED tracer. It focuses on the tracer
architecture and the integration of the tracer within the entire ASSURED ecosystem.

The deliverable begins with a review of the state-of-the-art tracing mechanisms establishing a re-
lation between them and the goals and assumptions for the ASSURED project. This review aims
to justify the software tracing mechanism proposed in ASSURED. Specifically, the tracing must
be flexible enough to support the different attestation mechanisms envisioned by ASSURED to
enforce the security state of the interconnected system-of-systems. Furthermore, software-based
tracing facilitates adoption as it does not rely on unique processor features, which enables deploy-
ing the ASSURED tracer on commodity ARM processors that are widely available on numerous
platforms. Additionally, software-based tracing can be combined with trusted execution environ-
ments technology to provide trustworthy tracing even in the face of powerful adversaries who
gained control of other parts of the device.

The deliverable continues with a summary of the envisioned edge device model as described in
D3.2 [8]. This includes the hardware components that must be part of each edge device, such
as an ARM processor supporting the Trustzone technology, and a TPM. We also provide details
regarding the software components that execute on edge devices and focus the discussion on
their relationship with the tracer. Finally, the assumed TCB of each edge device is summarized
based on the definition provided in D3.1 [6].

In addition, in the deliverable, we provided a thorough description of the tracer architecture. The
algorithms used to recover semantic information on the platform, including memory acquisition
both in normal world operation mode and in the secure world operation mode. We presented the
virtual-to-physical translation, which is the cornerstone to trace high-level semantic information
such as control flows and the configuration of the platform.

We also provided a summary of the control-flow attestation and configuration integrity verification
mechanisms that are used in ASSURED to infer the risk level of each edge device. We provided
details on methods used to capture the control flows and device configuration, examples of traces,
and the interface the tracer shares with the verifiers. Finally, we concluded D3.4 with a high-level
description of the attack validation component, and how the tracer can supplement it by tracing
specifically chosen variable values to be used as inputs to infer attack details.

ASSURED D3.4 PU Page 48 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

List of Abbreviations

Abbreviation Translation
AE Authenticated Encryption

ABE Attribute-based Encryption

AK Attestation Key

CA Certification Authority

CFA Control-flow Attestation

CFG Control-flow Graph

CIV Configuration Integrity Verification

CSR Certificate Signing Request

DAA Direct Anonymous Attestation

DLT Distributed Ledger technology

EA Enhanced Authorization

EK Endorsement Key

GSS Ground Station Server

MSPL Medium-level Security Policy Language (MSPL)

NMS Network Management System

Privacy CA Privacy Certification Authority

Prv Prover

PCR Platform Configuration Register

PLC Program Logic Controller

RA Risk Assessment

RAT Remote Attestation

SCB Security Context Broker

SoS Systems of Systems

SSR Secure Server Router

S-ZTP Secure Zero Touch provisioning

TC Trusted Component

TLS Transport Layer Security

TPM Trusted Platform Module

Vf Virtual Function

VM Virtual Machine

Vrf Verifier

WP Work Package

TCG Trusted Computing Group

ZTP Zero Touch Provisioning

ASSURED D3.4 PU Page 49 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

References

[1] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi,
and Matthias Schunter. DIAT: Data Integrity Attestation for Resilient Collaboration of Au-
tonomous Systems. In NDSS, 2019.

[2] Tigist Abera et al. C-FLAT: Control-Flow Attestation for Embedded Systems Software. In
Proceedings of the 2016 ACM SIGSAC CCS Conf., pages 743–754, 2016.

[3] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented program-
ming: a new class of code-reuse attack. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, pages 30–40, 2011.

[4] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer. Non-control-
data attacks are realistic threats. In USENIX Security Symposium, volume 5, 2005.

[5] The ASSURED Consortium. ASSURED tracing. https://gitlab.com/assured_project/
assured-tracing.

[6] The ASSURED Consortium. Assured attestation model & specification. Deliverable D3.1,
November 2021.

[7] The ASSURED Consortium. Assured blockchain architecture. Deliverable D4.1, November
2021.

[8] The ASSURED Consortium. Assured layered attestation and runtime verification enablers
design & implementation. Deliverable D3.2, November 2021.

[9] The ASSURED Consortium. Assured reference architecture. Deliverable D1.2, May 2021.

[10] The ASSURED Consortium. Assured use cases & security requirements. Deliverable D1.1,
February 2021.

[11] The ASSURED Consortium. Operational sos process models & specification properties.
Deliverable D1.3, September 2021.

[12] The ASSURED Consortium. Policy modelling & cybersecurity, privacy and trust constraints.
Deliverable D2.2, November 2021.

[13] The ASSURED Consortium. Risk assessment methodology & threat modelling. Deliverable
D2.1, November 2021.

[14] The ASSURED Consortium. Assured collective threat intelligence analysis & forecasting
framework. Deliverable D2.7, February 2022.

ASSURED D3.4 PU Page 50 of 53

https://gitlab.com/assured_project/assured-tracing
https://gitlab.com/assured_project/assured-tracing

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

[15] The ASSURED Consortium. Assured runtime risk assessment framework. Deliverable D2.3,
February 2022.

[16] The ASSURED Consortium. Assured secure distributed ledger maintenance & data man-
agement. Deliverable D4.2, February 2022.

[17] The ASSURED Consortium. Assured tc-based functionalities. Deliverable D4.5, February
2022.

[18] The ASSURED Consortium. Evaluation framework & demonstrators planning. Deliverable
6.1, February 2022.

[19] The ASSURED Consortium. Security context broker specification and smart contract defini-
tion & implementation for policy enforcement. Deliverable D2.2, February 2022.

[20] Heini Bergsson Debes, Thanassis Giannetsos, and Ioannis Krontiris. BLINDTRUST: oblivi-
ous remote attestation for secure service function chains. CoRR, abs/2107.05054, 2021.

[21] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi, Patrick
Koeberl, N Asokan, and Ahmad-Reza Sadeghi. Lo-fat: Low-overhead control flow attestation
in hardware. In Proceedings of the 54th Annual Design Automation Conference 2017, pages
1–6, 2017.

[22] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. Smart: Secure and
minimal architecture for (establishing dynamic) root of trust. In Ndss, volume 12, pages
1–15, 2012.

[23] Thanassis Giannetsos and Tassos Dimitriou. Spy-sense: Spyware tool for executing stealthy
exploits against sensor networks. In Proceedings of the 2Nd ACM Workshop on Hot Topics
on Wireless Network Security and Privacy, HotWiSec ’13, pages 7–12, 2013.

[24] Mel Gorman. Understanding the Linux virtual memory manager. Prentice Hall Upper Saddle
River, 2004.

[25] Tooba Hasan, Akhunzada Adnan, Thanassis Giannetsos, and Jahanzaib Malik. Orches-
trating sdn control plane towards enhanced iot security. In 2020 6th IEEE Conference on
Network Softwarization (NetSoft), pages 457–464, 2020.

[26] James Hendricks and Leendert van Doorn. Secure bootstrap is not enough: Shoring up
the trusted computing base. In Proceedings of the 11th Workshop on ACM SIGOPS Euro-
pean Workshop, EW 11, page 11–es, New York, NY, USA, 2004. Association for Computing
Machinery.

[27] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, P. Saxena, and Zhenkai
Liang. Data-oriented programming: On the expressiveness of non-control data attacks. In
IEEE Symposium on Security and Privacy (SP), 2016.

[28] Nikos Koutroumpouchos, Christoforos Ntantogian, Sofia-Anna Menesidou, Kaitai Liang,
Panagiotis Gouvas, Christos Xenakis, and Thanassis Giannetsos. Secure edge comput-
ing with lightweight control-flow property-based attestation. In 2019 IEEE Conference on
Network Softwarization (NetSoft), pages 84–92, 2019.

ASSURED D3.4 PU Page 51 of 53

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

[29] Benjamin Larsen, Heini Bergsson Debes, and Thanassis Giannetsos. Cloudvaults: Inte-
grating trust extensions into system integrity verification for cloud-based environments. In
Computer Security, pages 197–220, Cham, 2020. Springer International Publishing.

[30] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. Keystone:
An open framework for architecting trusted execution environments. In Proceedings of the
Fifteenth European Conference on Computer Systems, pages 1–16, 2020.

[31] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah Martin. Trust-
zone explained: Architectural features and use cases. In 2016 IEEE 2nd International Con-
ference on Collaboration and Internet Computing (CIC), pages 445–451. IEEE, 2016.

[32] Nvidia. NVIDIA DOCA APP SHIELD: Shield Your Host Services with Adap-
tive Cloud Security. https://resource.nvidia.com/en-us-linely-whitepaper/

doca-app-shield-solution-brief.

[33] OP-TEE. OP-TEE: Platforms supported. https://optee.readthedocs.io/en/latest/

general/platforms.html.

[34] Yuto Otsuki, Yuhei Kawakoya, Makoto Iwamura, Jun Miyoshi, and Kazuhiko Ohkubo. Build-
ing stack traces from memory dump of Windows x64. Digital Investigation, 24:S101–S110,
2018.

[35] OWASP Top 10: Open Web Application Security Project. OWASP
Top 10 2021, 2021. https : / / sharedassessments . org / blog /

owasp-top-10-open-web-application-security-project/ [Online; accessed 28-
December-2021].

[36] Dimitrios Papamartzivanos, Sofia Anna Menesidou, Panagiotis Gouvas, and Thanassis Gi-
annetsos. Towards efficient control-flow attestation with software-assisted multi-level execu-
tion tracing. In 2021 IEEE International Mediterranean Conference on Communications and
Networking (MeditCom), pages 512–518, 2021.

[37] Bryan Parno. Bootstrapping trust in a ”trusted” platform. In Proceedings of the 3rd Con-
ference on Hot Topics in Security, HOTSEC’08, pages 9:1–9:6, Berkeley, CA, USA, 2008.
USENIX Association.

[38] Global Platform. TEE Internal Core API Specification v1.1. https://globalplatform.

org/specs-library/tee-internal-core-api-specification/.

[39] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi,
and Thorsten Holz. Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in c++ applications. In 2015 IEEE Symposium on Security and Privacy,
pages 745–762. IEEE, 2015.

[40] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM conference on Computer and
communications security, 2007.

[41] Suchakrapani Datt Sharma and Michel Dagenais. Enhanced userspace and in-kernel trace
filtering for production systems. Journal of Computer Science and Technology, 31(6):1161–
1178, 2016.

ASSURED D3.4 PU Page 52 of 53

https://resource.nvidia.com/en-us-linely-whitepaper/doca-app-shield-solution-brief
https://resource.nvidia.com/en-us-linely-whitepaper/doca-app-shield-solution-brief
https://optee.readthedocs.io/en/latest/general/platforms.html
https://optee.readthedocs.io/en/latest/general/platforms.html
https://sharedassessments.org/blog/owasp-top-10-open-web-application-security-project/
https://sharedassessments.org/blog/owasp-top-10-open-web-application-security-project/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/

D3.4 - ASSURED Real-Time Monitoring & Tracing Functionalities

[42] Edwin Smulders. User space memory analysis. Master’s thesis, University of Twente, 2013.

[43] TCG. Trusted platform module (tpm). https://trustedcomputinggroup.org/

work-groups/trusted-platform-module, 2020. Accessed: 2020-12-01.

[44] Giannetsos Thanassis, Dimitriou Tassos, and Prasad Neeli R. Weaponizing wireless net-
works: An attack tool for launching attacks against sensor networks. In Black Hat Europe
2010, Barcelona, Spain, April 12-15, 2010.

[45] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad Ibrahim, Yier Jin,
and Ahmad-Reza Sadeghi. Atrium: Runtime attestation resilient under memory attacks.
In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
384–391. IEEE, 2017.

ASSURED D3.4 PU Page 53 of 53

https://trustedcomputinggroup.org/work-groups/trusted-platform-module
https://trustedcomputinggroup.org/work-groups/trusted-platform-module

	ASSURED - D3.4-Cover
	Disclaimer
	Copyright notice

	ASSURED_D3_4
	List of Figures
	List of Tables
	Introduction
	Towards Efficient Remote Attestation with Software Assisted Multi-level Execution Tracing
	Scope and Purpose
	Relation to other WPs and Deliverables
	Deliverable Structure

	Research Background of Tracing Techniques
	Tracer Solutions
	Software Tracing
	Hardware Tracing
	Hardware-assisted Software Tracing
	Out-of-band Tracing
	Intrusive vs. Non-intrusive Tracing
	ASSURED Software-based Tracing Approach Adoption

	System Model
	Use of Tracer in ASSURED Ecosystem
	Edge Device Hardware
	Edge Device Software Stack
	Secure World Software
	Normal World Software

	Trusted Computing Base (TCB)

	ASSURED Tracer Architecture
	Adversary Model
	Operational Model
	Traces Security
	Running Example of the Complete ASSURED Tracing Flow

	Control-Flow Tracing
	Control-flow Attestation
	CFA Tracing Building Blocks
	Program Composition
	Runtime Attacks

	Tracing Method
	Trace Output
	Verifier Interface

	Configuration Integrity Tracing
	Configuration Integrity Verification
	Tracing Method
	Trace Output
	Verifier Interface

	Attack Validation Tracing
	Tracing Method
	Trace Output
	Tracer Interface

	Current Status and Future Plans
	Current Implementation Status & Research Plan towards Second Release
	Current Implementation Status
	Research Plan towards Second Release

	Discussion

	Conclusion

