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EXECUTIVE SUMMARY 

Deliverable D1.3 focuses on the definition of the system properties, per use case, that need to 
be considered for (run-time) attestation so as to produce the necessary security claims 
towards achieving the required level of assurance and trustworthiness. Such validation 
properties can actually capture the entire application stack of a device (from configuration 
properties to execution behavioural properties) depending on the types of attacks 
considered, the safety-critical nature of the services and any timing constraints. 

Recall that ASSURED core innovation is to be able to enhance the security posture of a 
“Systems-of-Systems” environment – comprising multiple, heterogeneous embedded 
devices – by assessing dynamic trust relationships and defining a trust model based on 
which the necessary security claims can be produced for establishing trust through the 
entire service-graph chain, for cooperatively executing safety-critical functions. In this 
context, ASSURED builds upon and expands the Zero Trust concept to tackle the issue of 
how to bootstrap vertical trust from the application, the execution environment and 
device hardware from one single component and continuing as such systems get connected 
to ever larger entities. This includes the design and employment of a new breed of attestation 
enablers for measuring and determining the integrity and origin of the system and all its internal 
(software) components. Trusted Execution Environments (TEEs), as sw- or hw-based security 
elements, will be essential to establish a verifiable chain of trust throughout the entire 
application stack of the host device, as well as protecting data in transit, at rest and in use. 

However, trying to attest the entire codebase raises concerns on the efficiency, scalability 
and robustness of these techniques that question whether they can be applied in the real-
world resource-constrained edge devices. Such limitations mainly stem from the fact that these 
types of operational assurance methods try to verify the integrity, during run-time, of the entire 
(untrusted) code base of commodity platforms and operating systems. Considering that 
competitive IIoT application markets will always produce innovative and large systems 
comprising diverse-origin software-based components, with uncertain security properties, the 
best one can hope for is that a sub-set of such loaded software functions can be efficiently 
protected (in near real-time) against sophisticated run-time exploitation attacks. 

Therefore, it is of paramount importance to be able to identify only those core properties that 
are safety-critical to the operation of a device that we can continuously attest without affecting 
both the resources and behaviour of the target device. This refers to the low-level properties 
that need to be attested for specific hardware, and can be enhanced by employing the 
modular protection profiles defined within ASSURED as part of the service graph 
representing the CPSoS, and can be used to achieve the required trustworthiness level of 
the entire system. 

To this end, D1.3 evaluates existing models, such as Business Process Modelling Notation 
(BPMN) and Case Management Modelling Notation (CMMN), been proposed for all those 
safety-critical components that need to coexist and be securely executed in a platform with 
shared hardware and software resources (such as caches and central memory bus), and their 
connection to the overall system behaviour. Based on this, it develops a more suitable model 
for ASSURED that can represent the business and technical processes relying on Cyber-
Physical System (CPS) environments. A model tailored for Cyber-Physical Systems of 
Systems (CPSoS) enables us to capture only those processes (such as algorithms, control, 
and device operational logic elements) with the highest criticality level, that need to be 
continuously verified in real-time. This will also act as the basis for the efficient, effective, and 
scalable attestation enablers. 

By coupling the Zero Trust security principle with the need of “Never Trust, Always Verify” 
specific system properties, ASSURED bootstraps vertical trust for all users, devices and 
systems in a “Systems-of-Systems” environment by enabling continuous authorization and 
authentication prior to be granted access to data or resources. Through TPM-enabled security 
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claims, assurances and verifiable chain of trust, ASSURED reaches its full potential: not only 
does it mitigates risks stemming from the Zero Trust SoS environment but also ensures 
resilience. 
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1 INTRODUCTION  

1.1 DYNAMIC TRUST ASSESSMENT IN SOS ENVIRONMENTS 

Seeking to design successful supply chain services comprising millions of autonomous Cyber-
Physical Systems (CPSoS), one has to cater to the security, trust and privacy requirements 
of all involved actors, ranging from the heterogeneous edge devices to the backend cloud 
systems. A key challenge is to establish and manage trust between entities, starting from bi-
lateral interactions between two single system components and continuing as such 
systems get connected to ever larger entities. But the challenge ahead is how to make 
sound statements on the security properties of single systems and transfer this to statements 
on the security properties of such hierarchical compositions of systems (“Systems-of-
Systems”)? 

Consider, for instance, the following security requirements in the context of the use cases 
considered in ASSURED: 

• In the domain of the envisioned “Smart Aerospace” use case, where Electronics 
Control Units (ECUs) (e.g., Flight Management System, Environmental Control 
System, Cockpit Flight Instrument) in an aircraft get connected to subsystems, and 
subsystems are connected by gateways (Secure Server Router (SSR)) to form the 
complete in-aircraft electronic system, and as such an aircraft gets connected to the 
Ground Station Server (GSS) or other aircrafts. 

• In the “Smart Manufacturing” use case, an IoT Gateway is used to connect the 
robots operating within a manufacturing infrastructure, so that the permitted movement 
of each robot can be determined centrally, taking into consideration the position of other 
robots or human workers. 

• In the “Smart Cities” use case, IP surveillance cameras and smoke detectors, as well 
as a series of PLC controllers for controlling the surveillance systems, constitute the 
Serafio complex, which is controlled through an Information and Communication 
Technology (ICT) system and an operations center, which consists of a cloud-based 
infrastructure with various the networking components and computational resources. 

• In the “Smart Satellites” use case, a Ground Station (GS) serves as a central unit, 
which is able to monitor, maintain and control various CubeSats, which are miniaturized 
satellites that perform specific missions in space. It is also possible for multiple 
CubeSats to collaborate in order to perform complex services and functions. 

This kind of security requirements extends also to other industries and domains beyond the 
ones that are envisioned in ASSURED. For example, in the automotive industry, ECUs get 
connected to subsystems, and subsystems are connected by gateways, in order to form the 
complete in-vehicle electronic system of a vehicle. As such, a vehicle gets connected to an 
OEMs backend system in connected cars or linked to other vehicles in V2V communication, 
creating an environment where the security level of a vehicle cannot be viewed in isolation, 
but in tandem with the entire network of connected cars. 

From all the above, it follows that the notion of securing a single, isolated device is outdated, 
since it cannot guarantee the trustworthiness level required by organizations with a complex 
CPSoS. However, given the increasing complexity of these systems, statements about 
integrity of the overall system or the confidentiality of specific data items are harder and 
harder to make.  Therefore, the question that is raised and that we attempt to answer in this 
deliverable, and with the ASSURED attestation services in general, is the following: How can 
we make sound statements on the specific security properties of single systems (that are 
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sufficient to depict the required level of trustworthiness) and transfer this to statements on the 
security properties of such hierarchical compositions of systems?  

In order to reply to this question, we first need to refer to the type of attacks that pose a threat 
to “Systems-of-Systems” environments with complex CPSoSs. In ASSURED, we aim to 
address the ever-changing landscape of attackers and types of threats, by mitigating the most 
prominent threats to a CPSoS that can be addressed by the provided trust assurance services. 
For example, the Open Web Application Security Project (OWASP) [1] maintains a yearly 
updated ranking list of Common Vulnerabilities and Exposures (CVEs), which is formulated 
by taking into consideration factors such as Exploitability, Detectability, Likelihood and 
Technical Impact, and by performing community surveys on application security and 
development experts, as well as using practical data from various organizations regarding the 
severity and frequency of occurrence of each threat and vulnerability. 

 

FIGURE 1: OWASP CVE RANKING DIFFERENCES BETWEEN 2017 AND 2021 

Figure 1 depicts the latest published OWASP ranking of CVEs for the year 2021, as well as a 
comparison with the corresponding list from 2017. By observing the evolution of the attack 
landscape, it becomes apparent that the concept of fulfilling security and privacy requirements 
for isolated assets or devices is becoming an increasingly outdated notion of security, and the 
construction of a security- and privacy-aware Service Graph Chain (SGC), that takes into 
consideration the positioning of each asset in the hierarchical composition of a CPSoS is the 
way to move forward. In other words, the importance of classical network attacks is in a 
downward trend, while software-related vulnerabilities are becoming more prevalent and a 
lucrative target to be exploited by sophisticated adversaries. Specifically, some of the relevant 
attacks whose prevalence has increased significantly throughout the past few years and are 
relevant to the considered use cases are the following: 

• Broken Access Control: Refers to unauthorized information disclosure, modification, 
or destruction of data or performing a business function outside an authorized user’s 
limits, due to an attacker tampering with the access permissions. Consider the Human 
Robot Interaction (CRI), where this issue is of critical importance, since unauthorized 
access to a robot may cause severe injury to a human worker. The attestation services 
provided by ASSURED together with the advanced identity management schemes 
(leveraging the concept of Verifiable Credentials) will address this, by verifying that the 
authorization status of the robots is in a trusted state. 

• Security Misconfiguration: A malicious modification in the configuration of a device, 
enabling access by a malicious party. This is relevant to all use cases, since all devices 
need to be protected from threats resulting from an untrusted configuration. This is 
mitigated by employing the newly developed Configuration Integrity Verification (CIV). 

• Vulnerable and Outdated Components: Outdated components are notoriously 
susceptible to security threats and attacks, since they may be loaded with firmware or 
application software that has not been patched in order to be protected from newly 
identified threats. This falls under the category of software vulnerabilities that can be 
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mitigated by attestation services, verifying that the components possess the latest 
software versions. 

• Insecure Design: Refers to architectural flaws related to design methodologies that 
cause vulnerabilities. Therefore, this category does not refer to a specific kind of 
vulnerability, but design and coding practices that make devices and systems more 
susceptible to various kinds of attacks. These can be detected with the help of 
attestation, so that they can be patched in future versions of the software. 

• Cryptographic Failures: Encompasses failures and attacks related to cryptographic 
functions and cryptographic primitives. This is of particular importance in the smart 
satellite use case, which employs a variety of cryptographic schemes and protocols for 
communication of the base station with the deployed satellites and can be mitigated by 
the ASSURED traffic verification and attestation services. 

From all the above, it follows that software-related threats and vulnerabilities pose a serious 
threat to the trustworthiness level of an ecosystem and have become increasingly prevalent 
over the past years. As it will become apparent throughout this deliverable, the integration of 
Trusted Computing technologies with novel attestation schemes provides an effective solution 
towards the mitigation of this kind of attacks, since such advanced assurance mechanisms 
can detect anomalies in the device configuration and execution of processes in each asset 
of a CPSoS (software or hardware asset). To this end, depending on the type of devices and 
services, we need to be able to map the properties that need to be attested with the 
corresponding devices. Note that this mapping can potentially be used as a guidance for the 
definition of protection profiles, or the enhancement of already existing ones; as have been 
proposed by the standards (ISO/IEC JTC1/WG13 and ISO/IEC JTC1/SC27). This refers to 
the low-level properties that need to be attested for specific hardware, and can be 
enhanced by employing the modular protection profiles defined within ASSURED as 
part of the service graph representing the CPSoS, and can be used to achieve the required 
trustworthiness level of the entire system. We will further expand on this notion in D2.2 [2]. 

The considered attack landscape, in tandem with the type of CPSoS considered within 
ASSURED, will also provide justification for the type of attestation schemes implemented as a 
part of the trust assurance services. Specifically, the schemes that will be employed and will 
be defined and expanded upon D3.2 [3] are the following: 

• Configuration Integrity Verification (CIV), which ensures the trustworthiness of the 
configuration of a device. 

• Control Flow Attestation (CFA), which ensures that the flow of actions performed by 
the software installed in a device is trustworthy. 

• Swarm Attestation, which is used in cases where simultaneous attestation of multiple 
devices working in tandem is required. 

• Direct Anonymous Attestation (DAA), which provides platform authentication 
capabilities in a privacy-preserving manner. 

• Jury-based Attestation, which ensures the correctness of the entire attestation 
process execution so as to capture any misbehaving entity; in the case where the 
Verifier essentially “lies” about the system measurements provided by another Prover 
device (Section 3.1). 

1.2 SCOPE AND PURPOSE 

The main goal of Deliverable 1.3 is twofold. First, to develop the modelling notation suitable 
for ASSURED that is used to capture those safety-critical components and services, 
comprising the Systems of Systems (SoS), and the interdependencies between them and the 
underlying platform, which will aid the work of identifying critical properties needed to be 
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attested continuously. This is the second goal of this deliverable, namely, to determine the 
validation properties that are crucial for the operational correctness and security of complex 
SoS, not only platform configuration properties but also execution properties. Thanks to the 
modelling of SoS we can focus on those components and services with the highest criticality 
level. At the end, the output is then applied to four use cases envisioned in ASSURED, 
mapping their adversary models with corresponding attestation properties. In the following 
work packages, specifically WP3, we will develop attestation and validation schemes to 
enforce those identified properties.  

To this end, this deliverable evaluates existing models, such as Business Process Modelling 
Notation (BPMN) and Case Management Modelling Notation (CMMN) and develops a 
model suitable for ASSURED that can represent the business and technical processes relying 
on Cyber-Physical System (CPS) environments. A model tailored for Cyber-Physical 
Systems of Systems (CPSoS) enables us to capture only those processes (such as 
algorithms, control, and device operational logic elements) with the highest criticality level, that 
need to be continuously verified in real-time. This is also the basis for the efficient, effective, 
and scalable attestation enablers. 

The highlight of D1.3 is to identify a set of properties that model the correct configurations 
and execution behaviours of critical components and therefore need to be continuously 
verified. One of the core offering provided by ASSURED framework is the property-based 
attestation that corroborates the fundamental security and non-security properties of entities 
and extends this to a large SoS. These properties serving as a measure of trust should reflect 
even minor status changes associated with attacks and abnormal operations. On this basis, 
the properties form the basis for an evaluation of broader system-wide properties and assure 
the cyber resilience in SoS-enabled supple chains. Thus, identification of suitable attestation 
properties is a key for ASSURED project.  

An explicit specification of system model and adversary model is a prerequisite for 
capturing suitable attestation properties, which is presented in D1.3 including the system trust 
anchor and the capabilities of adversaries at different levels. Depending on the system and 
application domain, the required security and non-security properties vary considerably. Thus, 
besides generic properties, we take full account of use-case specific properties for the 
envisioned four scenarios in ASSURED. Finally, D1.3 demonstrates the applicability of the 
model and attestation properties defined in this document towards the four use cases of 
ASSURED. This entails the analysis of each use case’s threat model and security 
requirements, and mapping between threats and associated attestation properties and 
schemes. ASSURED framework will implement multiple attestation schemes corroborating 
various properties to cover threats within all phases of a device’s execution. 

1.3 RELATION TO OTHER WPS AND DELIVERABLES 

As a subsequent document, Deliverable D1.3 directly gets input from D1.1, which defines the 
use case scenarios and functional specifications for the entire ASSURED framework, and 
D1.2, which specifies the ASSURED reference architecture including the components and the 
communicating interfaces. This essentially sets the scene for the core building block of 
attestation protocols that serves as the central mechanism towards enhancing the 
operational assurance of the target SoS. On the other hand, this vocabulary of system 
properties to be attested will also be embodied in the definition of the attestation-related data 
sharing behaviours that will be fleshed out in D1.4. More specifically, depending on the safety-
critical nature of the service (and its subsequent properties to be attested) there might be 
different requirements when it comes to confidentiality, privacy and sharing attributes. This 
might relate not only to privacy when it comes to the Device ID but also to attestation 
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evidence privacy in the sense that a Verifier should be able to attest to the correct state of a 
Prover device but without the need to know all the internal details of the Prover’s state. 

With the identification of the system validation properties to be considered for attestation in 
each one of the envisioned use cases, D1.3 also serves as a reference point for all the activities 
in WP3 revolving around the design of the new breed of attestation schemes as will be 
documented in D3.2, D3.3 and D3.6 and D3.7. Furthermore, these properties will set the scene 
for the experimentation and evaluation of all attestation enablers, in the use cases, to be 
documented in D6.2. 

 

FIGURE 2: RELATION OF D1.3 TO OTHER WPS AND DELIVERABLES 

Finally, D1.3 acts as a starting point of technical reference for the later WP4 technical activities 
revolving around the design of the ASSURED Blockchain infrastructure for the secure and 
auditable recording and sharing of all attestation-related data. Since ASSURED will 
provide advanced crypto primitives for decentralized Attribute-based Encryption and Attribute-
based Access Control for this type of data, the structure and format of all validation properties 
and system traces to be considered is of paramount importance so as to make sure of the 
modelling of an international attestation data space model. 

1.4 DELIVERABLE STRUCTURE 

This deliverable is structured as follows. In Chapter 2, we present a detailed explanation of 
how we build the model to be employed by ASSURED. We review the state-of-the-art trust 
management techniques in supply chain ecosystems, as well as the SoS modelling notations. 
We will explicitly define the criterion that a model needs to fulfil to be used in ASSURED. In 
the end of Chapter 2, we introduce the ASSURED model combining both artefact-centric 
modelling and data-driven activities that dictate the status of the edge devices. 
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In Chapter 3, we elaborate on several key definitions that constitute the foundation of the 
ASSURED attestation enablers. Chapter 3 starts with the definition of attestation and 
verification. Next, the system model and the “as is” system properties are defined, which 
specify the safety, security, and privacy requirements that need to be fulfilled, even under 
attack. To understand the adversary capabilities and goals, we also provide a comprehensive 
adversary model for SoS. Given protection goals and potential attacks, we summarize a set of 
configuration and execution properties to be attested and verified to enhance the operational 
assurance and program correctness. In Section 4, we elaborate on the static and dynamic 
validation properties, which are used by the attestation mechanisms in order to determine that 
a system-of-systems is in a trustworthy state. Based on the model introduced in Chapter 3 and 
the attestation properties elaborated in Chapter 4, we demonstrate a detailed analysis of each 
use case scenario in ASSURED in Chapter 5. We apply the model to use cases to identify 
those safety-critical components, define the adversary model and select matched attestation 
properties. Finally, Chapter 6 summarizes and concludes the deliverable. 
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2 APPROACH AND MODEL 

We previously presented a list of the most prominent threats and vulnerabilities in the current 
cybersecurity environment, and we highlighted the threats whose prominence is in an upward 
trend, and the ways that these threats can be addressed by the attestation services provided 
in ASSURED. Taking this into consideration, we next aim to identify and define the properties 
that should be attested, as well as the cyber-security and trust model, so that we can 
consider that the target CPSoS can is in an acceptable and trustworthy state. 

In general, this approach can be either activity-driven or asset-driven. In an activity-driven 
approach, cybersecurity assurance is evaluated based on the actions taken by the assets of 
the CPSoS, while in the asset-driven approach, the focus is placed on the assets or devices 
themselves, their configuration properties, and their current state. In ASSURED, we follow an 
asset-driven approach, which is also referred to as artefact-centric. Throughout this chapter 
we will expand upon this notion and provide justification for its selection. 

To this end, we will define the asset modelling approach that will be employed, which will 
provide the basis for the extraction of the properties to be attested. We consider that each 
hardware asset can contain and run multiple software assets, and based on the asset 
cartography, we should be able to identify what processes are executed and which attacks 
are more impactful, so that we can subsequently define acceptable states. We will also define 
the notation that will be used in order to express these properties, so that the operational and 
security status of the system can be accurately represented with the required level of 
granularity. Also, note that artefact-centric modelling will provide the basis for the definition of 
the protection goals and attack settings per use case, which will be provided in Chapter Error! 
Reference source not found.. 

When referring to “Systems-of-Systems” that are used in various domains in the industry, such 
as the use cases considered in ASSURED, this constitutes the secure continuum of the edge 
and the cloud working in tandem in a trustworthy manner. This is referred to as the edge-cloud 
continuum digital trust. In this context, ASSURED is conceptually positioned to be within the 
Industrial Reference Architecture (IRA) [4], which is presented in Figure 3, along with the 
positioning of ASSURED within the IRA. The IRA consists of the following layers: 

• The Field, which contains the devices and assets of the system, as well as the various 
stakeholders. 

• The Edge Control, which contains the ASSURED security mechanisms that are used 
to securely control and manage the devices of the system. 

• The Ledger, which constitutes the secure medium that is used in order to exchange 
data and perform management operations. 

• The Cloud, which is the operational centre, i.e., the backend of the system, where 
cloud and supply chain applications are executed. 

Among the aforementioned categories, the focus in ASSURED is to secure the Field and the 
Edge (physical devices, sensors, and gateways), by identifying the appropriate security 
mechanisms that are contained in the Ledger and are managed by the Cloud. In this context, 
we aim to identify the processes that should be secured. Note that the types of data to be 
secured are further addressed in D1.4 [5]. 
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FIGURE 3: POSITIONING OF ASSURED IN THE INDUSTRIAL REFERENCE ARCHITECTURE (IIRA) 

Towards this direction, ASSURED will adopt key technologies, in the field of trusted 
computing and lightweight cryptographic trust anchors, as enablers for the secure 
deployment, and verifiable assurance of safety-critical components running at the edge and 
the secure communication, between interacting entities, by enabling advanced key 
establishment mechanisms. This will include trust extensions, leveraging remote attestation 
schemes, guaranteeing the trust relationships between all layers in the SoS run-time 
stack. 

2.1 MODELLING CYBER-SECURITY ASSURANCE AND TRUST IN 
COMPLEX SOS 

When we refer to cyber-security assurance witihn ASSURED, we aim to go beyond the 
classical notion of cybersecurity, which focuses on the protection of individual assets from 
network attacks. Here, we aim to capture the interactions and security relationships within the 
assets and define a holistic security approach, so that we can eventually achieve the desired 
level of trustworthiness in an entire “System-of-Systems” environment. To this end, we employ 
assurance and attestation services that consider the security of the system as a whole. 

By using such assurance and attestation services, ASSURED increases the level of 
trustworthiness and integrity of the overall SoS-enabled ecosystem.This does not only include 
the integrity of the constituent hardware and software assets (and the data they 
exchange), but goes beyond this notion to also capture the security relationships and 
interactions between such system components in the context of a trusted service graph 
chain. Particularly with respect to safety and security, components must be enabled to make 
and prove statements about their state and actions so that other components can align their 
actions appropriately and an overall system state can be assessed and security policies can 
be evaluated and enforced. Recall, for instance, the example scenario that was described in 
Section Error! Reference source not found. where  single ECUs, in an aircraft, may be able 
to remotely attest to other devices that they are in untampered state of integrity and have up-
to-date and valid input data available on which it bases its decisions. Based on such a proof, 
another ECU may then decide (based on a security policy) that it can accept commands from 
the earlier ECU without risking the safety and security of the overall system. For example, the 
landing stability control ECU may accept data from wheel sensors based on which it will control 
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the vehicle’s brakes. This can be expanded to ensure the safety and security of an overall 
aircraft and then of systems of aircrafts communicating with the ground station. 

Such security relationships, between system components, are initially extracted from the 
operational goals of the service running and provided by the overall SoS, and complement the 
security – in a comprehensive and systematic way – by uncovering additional security 
objectives between related components to produce and integral security solution. They are 
usually defined by three concepts, namely isolation, interaction and representation. 

 An isolation relationship exists when a component is partially or totally separated, i.e., 
isolated, by a second component, from other components located inside or outside a 
system. Examples can be considered software processes, running as part of the 
computing base of a system, whose execution must be done in isolated environments in] 
order to minimize the attack surface; or a data bus that isolates the information transmitted 
between two digital circuits. Such a relationship essentially dictates the very strict 
integrity requirements on the input data needed by a component towards progressing 
with its execution. For instance, in the “Safe Human Robot Interaction” scenario, as part 
of the Smart Manufacturing use case, the function for calculating the worker’s position in 
a manufacturing floor is based on data coming from the location sensors that need to be 
either protected by a dedicated data bus or through advanced attestation mechanisms. 

 An interaction relationship exists when two components interact or communicate in any 
way. The actual executed functions or the purpose of the communication are not relevant 
by themselves in the context of security, but only the location of the interactions for the 
purpose of identifying security requirements of the interacting components. For instance, 
in the previous scenario, examples of interaction relationships include the location 
calculation software process interacting with the underlying operating system, or the 
information transmitted between the location sensor’s driver and the processing 
application software. 

 A representation relationship exists between a system component acting on behalf of 
another component. Components participating on a representation relationship can be of 
any type, namely physical or digital without restrictions, and they enable the joint or 
gateway between different categories of components. Again, in the aforementioned 
scenario, an example of a representation relationship could be the collection of all system 
data, from the deployed robot arms to the Industrial Gateway, that represents the correct 
state of the entire manufacturing floor – in the context of safety environmental conditions 
with no fatal worker accidents.  

By adopting such a cyber-security architecture, we claim that a SoS can withstand even a 
prolonged siege by a pre-determined attacker with known or unknown capabilities as the 
system can dynamically adapt to its security and safety state. This is substantially more 
flexible than traditional security mechanisms that often try to maintain and enforce pre-defined 
policies using rather static security mechanisms. We, essentially, provide a very high level of 
operational assurance in integrity, security, and finally safety of the target SoS-enabled 
ecosystem as we actively manage the system states by permanently engaging with all 
involved devices and components in the context of a specific service graph chain. This 
stems from converting all components to roots-of-trust, capable of providing verifiable 
evidence on their correctness, and using these roots-of-trust to establish and maintain trust 
relationships. Once a trusted chain is materialised, secure chain communications can be 
established and used to provide trusted chain-wide system updates. Thus, using the concept 
of a trusted service graph chain, trusted communities of services can be created within the 
“Systems-of-Systems”. 

To construct such “trusted chains of services and devices”, we need to break them down to a 
composition of multiple heterogeneous devices in order to be able to identify the types of 
properties that need to be (periodically) verified per device (and their running software 
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processes). However, towards this direction, it is also imperative to have a baseline of system 
specification common to all the edge devices. 

2.2 IN THE SUPPLY CHAIN WE TRUST 

Several cybersecurity assurance models have been proposed in the literature, in the context 
of various domains of the industry. Next, we present a state-of-the-art analysis of the methods 
that have been proposed, in the domains that refer to each of the use cases considered in 
ASSURED, i.e., the smart city domain, the smart satellite communication domain, the 
smart manufacturing domain and the safe aircraft upgradability and maintenance domain. 
Each of these is characterized by different needs and security requirements, which should be 
addressed by the cybersecurity assurance solution that will be applied. 

Taking into consideration the state-of-the art that will be presented for all the considered 
domains, we can afterwards define the goal of the cybersecurity services provided by 
ASSURED. In the previous section, we introduced the types of relationships between assets 
(isolation, interaction, and representation). However, as it will become apparent throughout 
this section, the trust models proposed in the literature are obsolete in this regard, because 
the state-of-the-art in cybersecurity models does not capture this full set of relationships that 
need to be considered in order to achieve the desired level of trustworthiness of an entire 
“System-of-Systems”, but only a subset of them. In ASSURED, we aim to cover this gap, by 
proposing a security model that captures all three types of asset relationships. Next, we 
describe how we aim to achieve this, by placing the ASSURED security services in the context 
of the envisioned use cases. 

2.2.1 Smart City Domain 

Smart City domain: Trust models for this category of systems have been introduced in the 
recent years [6][7], since the concept of smart cities is a rather new and has been launched 
after 2014. The key-factors in the models include [8][9]:   

• Actors, users, management of interactions  

• Applications, data  

• Network, IoT, devices.  

The main tool for trust management is the Business Process Model and Notation (BPMN), 
applicable to diverse domains for the modelling of processes, annotations, data objects etc. 
and it has been applied also for smart city processes [10]. Recently SecBMPN2BC has been 
developed for research purposes and tested in case-studies including a city process [11]. 
SecBPMN2BC is an evolution of SecBPMN that DAEM has tested and used for the modelling 
for city processes in the H2020 project VisiOn “Visual Privacy Management in User Centric 
Open Requirements” H2020 – DS – 2014 – 1 – IA - GA 653642 [12][13]. The specific case-
study for the application of SecBPMN on city processes referred to citizen data privacy by 
design during the consumption of a city service, more specifically, the issuance of a birth 
certificate. This case has been further researched for the evaluation of SecBPMN2BC that 
aims extend BPMN 2.0 for the design of business processes for Blockchain with a model driven 
approach.  

2.2.2 Smart Satellite Communication Domain 

In order to provide assurance in Smart Satellite Communication services, a Trust 
Management System (TMS) for Satellite Flight Software (FSW) tele-commanding that 
detects anomalous behaviour is proposed by Duncan [14], implementing the multiple trust 
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mechanism TMS framework proposed by Zhao and Varadharajan detailing a unified trust 
management framework [15] and following an architecture similar to KeyNote TMS [16]. 

According to the TMS proposed by Duncan, Trust mechanisms allow trust relationships to be 
evaluated by system policies. The main trust mechanism proposed is the Interaction Trust (I-
Trust) mechanism, which monitors the behaviour of entities in the system based upon 
interaction markers. The I-Trust mechanism consists of functions which calculate and maintain 
I-Trust values for entities communicating with the FSW. Each entity being tracked by the TMS 
can have multiple trust markers associated with it. A separate I-Trust value is calculated for 
each marker associated with an entity. These I-Trust values are later used to make policy 
determinations in the system. Credential Trust and Policy evaluation mechanisms are also 
mentioned along with a proposal for additional trust mechanisms that can be used (e.g., 
environmental trust mechanism). 

According to Manulis [17], the trend for more part of communication stack to consist of SW 
instead of hardware opens the system to software threats and therefore they propose that 
future implementations should take in mind how to trust software to behave as intended to be.  

Attacks can target the ground segment, the communications, and the space segment. Security 
threats for ground segment can include physical attacks, computer network exploitation, data 
corruption and outdated software deployed. Main security threats at communication level can 
include jamming, interception of data over a communication channel (eavesdropping), 
hijacking and spoofing. When it comes to the space segment, some threats can include 
software vulnerabilities and replaying recorded transmissions. 

Some of the open challenges mentioned from Manulis for the satellite and ground segments 
are the following: 

- Need for lightweight authentication and secure communications considering the 

CubeSat area and power consumption limitations. 

- Key management in terms of scalability, group of dynamics (CubeSats entering and 

leaving constellations, assign & revoke key respectively), key protection and quantum 

key distribution. 

- Software and firmware updates, handle introduction of vulnerabilities.  

ASSURED can adress these above mentioned open challenges through the use of lightweight 
cryptoprimitives, key agreement protocol, software & control flow attestation and use of block 
chain technology. Specific properties to be attested by assured include the hash of software 
services (on Ground Station & CubeSats). 

2.2.3 Smart Manufacturing and Smart Factory Domain 

Security within the context of this domain is of utmost importance when it comes to integrating 
Industrial Internet of Things (IIoT) solutions to existing infrastructure. The notion of 
introducing technologies like Blockchain has been taken up by research as well as Open-
Source / Proprietary providers, which in turn is providing a better overview of introducing Trust 
as well as Security within these smart manufacturing scenarios. 

Each provider has a large set of tools and information that comprise of their ecosystem when 
it comes to providing IoT / IIoT Security with Blockchain Technology to form a trust model 
within a smart manufacturing unit. Large Enterprise solution providers such as IBM, SAP, 
Accenture provide their own proprietary solutions for introducing trust management via 
Blockchain through their own cloud platforms. The solutions are developed on a consultancy-
based model and are generally highly narrow-focused based on the manufacturer’s criteria. 
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Solution provider MultiChain [18] provides an OSS (Open-Source Software) / Commercial 
solution. The OSS variant provides basic features for smaller enterprises to get started on a 
simple adoption of Blockchain, and eventually fulfil increased requirements and demands by 
moving from the open-source solution to the commercial solution. Multichain provides a 
diverse ecosystem and software suites for external key management, permission consensus 
as a governance model, clustering and high availability and wallets for private key 
management. Their software suite is available online under the GPLv3 License [19] with 
commercial licenses and support offered on a consultancy basis. DoubleChain [20] provides a 
Blockchain-based platform for management of IoT Devices and assets, as well as other forms 
of asset and supply chain management. DoubleChain provides a patented authentication 
solution for IoT devices called AEGIS which uses Blockchain to provide trust management at 
the device level. OriginTrail [21] provides a Blockchain platform solution that focuses on data 
interoperability and increased collaboration between enterprises in the smart manufacturing 
area. OriginTrail relies on GS1 standard’s Electronic Product Code Information System 
(EPCIS), which provides a sound foundation for representing data in a fixed format, thus 
making systems and products in manufacturing systems more coherent and easily reliable and 
transparent through usage of Blockchain. A similar solution is provided by WaltonChain [22], 
where Radio Frequency Identification (RFID) systems can be integrated and transparently 
maintained through Blockchain integration. 

A more mature ecosystem is IOTA [23], which provides a wide range of software suites and 
documentation for various purposes. The Industry Marketplace from IOTA [24] is a vendor as 
well as industry-neutral platform which focuses on automation of trading of physical and digital 
goods and services. This marketplace provides a transparent and reliable way to share 
process and manufacturing information through trust models and encrypted channels to 
necessary third parties and stakeholders. It provides Decentralized Identifier Identification 
(DID) for secure authentication in a decentralized manner. 

2.2.4 Secure and Safe Aircraft Upgradability and Maintenance Domain 

In this case, since we consider the safety of aircraft where issues may pose a severe risk to 
the wellbeing of human passengers and personnel, it is imperative to employ a comprehensive 
security solution, that takes into consideration all the components of the system, such as flight 
management modules, environment control systems and on-board wireless services. 

One security solution for smart aerospace environments has been proposed by UTRC [25]. 
Specifically, the need to move to an automatic and remote approach to deal with the 
maintenance of both physical and cyber elements of the aircraft has been outlined throughout 
the document, particularly in sections III-D and III-F. 

Also, in the ARINC technical reports, ARINC 827 [26] and ARINC 835 [27], the methods for 
to ensure safe software distribution in aerospace environments was discussed. Specifically, 
the use of a signature is proposed, which is only checked when installed on the device. While 
this is a good starting point, checking the signature only when the software is being installed 
is not enough and ASSURED would improve this by using run-time attestation mechanisms. 

2.3 OVERVIEW AND COMPARISON OF EXISTING MODELS 

Since ASSURED aims to develop a holistic framework targeting the cyber resilience in the 
supply chain domain, it is highly essential to be able to represent business and technical 
operations in such a way that allows deterministic interpretation of acceptable states. This 
essentially defines what constitutes a “normal” behaviour of an edge device that needs to be 
considered for attestation and verification, prior to making a decision on the correctness of a 
device’s state. It is important to note that the criteria for defining acceptable states are also 
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related to the properties that should be attested, taking into consideration the attack landscape 
that was presented in Section Error! Reference source not found.. The selected cyber-
security assurance and trustworthiness model should take into consideration these factors in 
order to best address the requirements of a CPSoS operating within the ASSURED 
environment. 

In the context of cybersecurity assurance, Business Process Management (BPM) models 
are frequently used in software development for understanding the behaviour of the users, 
their requirements, while resources are either human or non-human assets, e.g., software, 
apps, or IT devices. These models should provide a representation of business operations that 
includes entities, entity types (e.g., cyber, physical, human), interactions, interaction 
types, protocols, attributes, etc. As aforementioned, this modelling is the cornerstone of the 
ASSURED attestation mechanisms. Several notations are nowadays available to model 
business processes at different levels of granularity. Currently in the literature, the two most 
prominent types of BPM models are a) the Business Process Modelling Notation (BPMN) 
and b) the Case Management Model and Notation (CMMN), and c) the Decision Model and 
Notation (DMN). 

BPMN is an activity-centric notation aimed at capturing business processes [28] and is under 
the supervision of Object Management Group (OMG) [29]. BPMN is the standard for 
modelling business processes and is widely used in both industry and academia. BPMN is 
based on flow-based modelling notations, such as UML activity diagram and IDEF [28]. It is 
designed to facilitate both communication between various process stakeholders [30] and for 
specifying requirements for software systems [31]. BPMN consists of tasks that represent the 
activities to be performed, gateways that route the sequence flow, events representing things 
that happen during the execution of a process, data capturing the flow of information and swim 
lanes depicting those responsible for the execution of the activities. Although BPMN perfectly 
captures the control flow among the activities and is also appropriate for modelling the 
inter-dependencies between manual and automatic tasks, it is lacking an effective support 
in modelling the data management, which is fundamental in the scope of security analysis 
in “Systems-of-Systems”. To address this issue, it has been proposed to consider smart 
devices as first-class citizens in the models [32]. Such extensions aim to make BPMN 
suitable to capture the role of CPS in business processes. 

In contrast to BPMN, CMMN is an artefact-centric and declarative modelling notation, 
designed to support case management and handling for dynamic changes [33]. The aim of 
CMMN is to assist with modelling the flexibility required for knowledge workers and the 
exceptions that occur in such declarative processes [34]. The main difference between CMMN 
and BPMN is the paradigm shift from procedural to declarative model [35][36]. In ASSURED, 
business process models will include an enriched data model able to give the opportunity 
for the designer to increase the awareness with respect to the data managed securely 
by the CPS. Focusing on data produced and/or consumed by the elements in the CPS gives 
the ability to the modeler to abstract from the intricacies of the underlying platform and to 
concentrate on the data. In this respect, ASSURED will also investigate the adoption of the 
CMMN notation, to model knowledge-intensive business processes relying on CPS 
environments, where no specific control-flow can be identified but most of the activities are 
driven by the changes of data status which can be driven by event occurring during the 
execution of the process. Also, it is important to consider that, availability or unavailability of 
data which depends on the status of the smart devices involved in their management, could 
affect a successful completion of the process. For this reason, according to the security-by-
design pillar, ASSURED will also investigate how to embed in the business process 
models information about data alternatives which can compensate the missing data, as 
well as sub processes which can be enacted in case original activities are 
compromised. It should be clarified that models will be totally aligned with IIRA and RAMI 4.0 
Patterns.  
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Another model complementary to the BPMN and CMMN models is the Decision Model and 
Notation (DMN), that also introduced by the OMG group and converts the code behind 
complex decision-making into easily readable diagrams [37]. All the three models outlined in 
this section are called the “triple crown” of business modelling notations, intended to 
bridge between business and IT by providing graphical representations. 

Even though the notion of BPM modelling has been extensively studied in the literature, it has 
rarely been studied in tandem with the notion of trustworthiness. One relevant research 
effort was presented in [38], where the integration of trustworthiness requirements in business 
process models using BPMN was proposed, and it was suggested that trustworthiness should 
be considered in the management of both human and non-human resources and in all stages 
of the business process life cycle (i.e., design, modelling, implementation, execution, 
monitoring and analysis). However, there is a lack of discussion on how to build the required 
level of trustworthiness. In addition, a conceptual four-stage model of trust-aware process 
design in BPM has been proposed in [39], which is based on reducing either uncertainty of 
specific process elements, or the vulnerabilities. A more recent work in [40] proposes Trust 
Mining, a business process modeling tool to analyse uncertainties and relationships based on 
previous work in [39]. 

2.4 SELECTION CRITERIA FOR THE ASSURED MODEL 

From the above sections, it follows artefact-centric modelling is more appropriate to be 
considered in the context of ASSURED, since it allows us to concentrate on the specific 
cases and scenarios offered by the envisioned use cases. As artefacts we consider all the 
comprised devices – the difference in the ASSURED ecosystem is that we can use both the 
extraction of specific control-flows as well as activities that are driven by changes of the 
data/device status. Thus, this requires the identification of the core properties that need to be 
considered for attestation towards the enhanced trust assurance of field elements. 
Specifically, taking into consideration the requirements that have been outlined in the previous 
sections, the selection criteria for the cyber-security assurance and trust model employed by 
ASSURED are as follows: 

• The model should be able to capture all three kinds of security relationships outlined 
in Section 2.1 (isolation, interaction, and representation), in order to cover the full range 
of asset relationships to fully capture the requirements of a CPSoS belonging to any 
domain. As it was previously mentioned, the existing modelling methodologies are 
outdated in this regard, therefore ASSURED should provide a solution in order to 
address this issue. 

• The ASSURED model should be able to provide trust assurance based on the 
properties that define acceptable states (property-based attestation), meaning the 
properties that can be used in order to ensure that the assets comprising the CPSoS, 
as well as the entire system-of-systems, can be considered to be in a trustworthy state. 
These properties are defined by the threat landscape presented in section Error! 
Reference source not found., where it was shown that software-based vulnerabilities 
are becoming increasingly prevalent. 

2.5 ASSURED MODEL 

The hybrid model adopted will consider an extension of the CMMN but combining both artefact-
centric modelling and data-driven activities that dictate the status of the edge devices. This 
way ASSURED trust management includes both a) modelling of the interdependencies and 
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interactions of the artefacts and b) modelling of the correctness and trustworthiness of the 
artefacts per se. The key aspect of ASSURED hybrid model is the role of enablers to extend 
the data sharing and security to the digital supply network. This capacity, jointly with the 
increasing demand by Industry 4.0 towards enhanced data sharing, will generate new 
opportunities to smoothly integrate ASSURED into the mainstream evolution of IIoT and 
Industry 4.0 Reference Architectures (i.e., RAMI 4.0 [41]). Towards this direction, ASSURED 
modelling is compatible with the reference architectures that have been proposed by the two 
key industrial consortia that are advancing the development of IIoT, namely Platform Industrie 
4.0 and Industrial Internet Consortium, as shown in the figure below. These initiatives have 
developed RA models for Industry 4.0: the Industrial Reference Architecture (IIRA) and the RA 
Model for Industrie 4.0 (RAMI). RAMI 4.0 supplements the IIRA model with the axes “Lifecycle” 
and “Hierarchical Levels”, while each of the four viewpoints outlined in IIRA reference 
architecture can be compared with the respective layers on the vertical axis of RAMI 4.0.  

 

FIGURE 4: ASSURED MODEL REFERENCE ARCHITECTURE 

ASSURED captures the operational processes and the various assets, of both RAMI 4.0 and 
IIRA and extend them for the case of digital supply networks comprising an ecosystem of 
collaborative manufacturing environments. The developed, enhanced and proved a trusted 
framework for attestation and system assurance is represented in Figure 4, where it is evident 
the alignment with the RAMI 4.0 and hence IIRA reference architectures. More precisely, the 
vertical axis represents the interoperability layers of RAMI 4.0, while the horizontal axis on top 
represents the hierarchy levels of RAMI 4.0. The following seven layers summarise how 
ASSURED hybrid model aligns with these reference architectures and how can be applied in 
the “Systems-of-Systems” used cases of Section 4. 

1. ASSURED Secure Field Devices Execution Layer: Operational assurance and 
resilience, hardware-based collective attestation and verification – This layer 
covers the supply chain from physical assets to the produced information and applies 
to the hierarchy levels of RAMI 4.0 namely “Field Device”, “Control Device” and 
“Station”. 
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2. ASSURED Field Devices Control: Attestation and verification, monitoring events 
and data status changes, operation process deployment – This layer covers the 
transition from the real to digital world to the assets functions and applies to the 
hierarchy levels of RAMI 4.0 namely “Field Device”, “Control Device”, “Station” and 
“Work Centres”. 

3. ASSURED Field Device Secure Analytics – This layer acts as an umbrella and 
covers all the interoperability and hierarchy levels of RAMI 4.0, apart from the “Product”. 

4. ASSURED Advances Secure On- and Off- Chain Data Management – This layer 
covers the transition from the real to digital world to the assets functions and applies to 
the hierarchy levels of RAMI 4.0 namely “Work Centres”, “Enterprise” and “Connected 
World”. 

5. ASSURED Access Control Policies based on Attribute-Based Encryption – This 
layer covers the access to information in general and to the necessary data and applies 
to the hierarchy levels of RAMI 4.0 namely “Work Centres”, “Enterprise” and 
“Connected World”. 

6. ASSURED Distributed Ledgers Layer: Advanced supply chain control services – 
This layer covers the asset functions and applies to the hierarchy levels of RAMI 4.0 
namely “Work Centres”, “Enterprise” and “Connected World”. 

7. ASSURED Cloud-based Storage – This layer covers the transition from the real to 
digital world to the organisation and business processes and applies to the hierarchy 
levels of RAMI 4.0 namely “Work Centres”, “Enterprise” and “Connected World”. 

2.5.1 ASSURED Use Cases Artefact-Centric Modelling 

Contrary to the traditional approach to industry in which a hardware-based structure with a 
clear communication hierarchy was prevalent, Industry 4.0 introduced flexible systems 
whose functions are not bound to hardware but distributed throughout the network. In these 
new systems internal communication can now be observed across an organisation’s 
hierarchical levels. New types of interactions have been introduced and external 
interactions between organisations have changed significantly and become more flexible. The 
result is that Industrial Controls Systems (ICS) are a prime target. These systems are 
increasingly Internet-enabled for easier monitoring and control. But moving to open 
systems with IP addresses creates more avenues for attack – especially if Internet access 
is poorly protected and ICS protocols for authentication are weak. Total financial losses 
attributed to security compromises jumped 38%. It could be argued that extracting monitoring 
data is a primary resource for cyber incident analysis. 

Thus, to fully understand the ASSURED ecosystem, one should identify the main Industry 
4.0 components based on current RAMI 4.0 reference model for manufacturing Industrial 
IoT and supply chain environments. From a security point of view, such components can be 
placed into the following categories: 

➢ Industrial Control Systems 
➢ IIoT End Devices – Sensors 
➢ Control Systems Communication Networks and their Components 
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FIGURE 5: DEVICE LAYER STRUCTURE IN THE SMART MANUFACTURING USE CASE 

Figure 5 depicts a conceptual overview of the layered structure of devices in the Smart 
Manufacturing use case (as an example), which demonstrates the types of relationships and 
interconnectivities between the assets that constitute the system architecture, as well as the 
levels of authentication that can be performed between these devices. For example, same 
level authentication can be performed between devices of the same level, where one acts as 
the Prover and the other acts as the Verifier. Conversely, in cross level authentication, 
attestation between two devices can be performed via a device belonging to a higher level, 
when a direct connection between the two devices is not available.  

In Table 1, we provide a categorization of the devices and assets employed in the context of 
each use case into each of the categories mentioned above, in accordance with the RAMI 4.0 
reference model, which will provide the basis for the artefact-based modelling methodology 
that will be followed. 

TABLE 1: ARTEFACT-CENTRIC MODELLING IN THE ASSURED USE CASES 

 Industrial Control Systems 
IIoT End Devices – 

Sensors 

Control Systems 
Communication 

Networks and their 
Components 

Smart 
Manufacturing, Safe 
Human Robot 
Interaction (HRI) 

The various robots and 
robotic arms operating on the 
manufacturing floor are 
connected and controlled by 
Programmable Logic 
Controllers (PLCs). These 
can be accessed by an OPC-
UA Server running on an 
Industrial PC. An IoT 
Gateway processes the 
collected data with collision 
detection algorithms. 

The robots that 
constitute the 
manufacturing system 
can estimate the location 
of themselves and the 
human workers in the 
factory floor in order to 
avoid accidents, by using 
various integrated 
location sensors. 

An Ultra-Wide Band 
Wireless Location 
System collects location 
information from the 
robots that operate on the 
manufacturing floor. The 
PLCs and robotic arms 
are connected over a 
PROFINET network. 

 

Smart Aerospace 
A wide range of operations is 
managed by various ECUs, 
which constitute the Flight 
Management Systems 

Each of the on-board 
cyber-physical systems 
contains a set of 
sensors, which serve to 

A Secure Service 
Router (SSR) gathers 
sensor data while flying, 
and transfers the data to 



D1.3: Operational SoS Process Models & Specification of Properties 

© 2020-2023 ASSURED Consortium Page 28 of 87 

(FMS), Environment 
Control Systems (ECS), 
Cockpit Flight Instruments 
(CFI), and on-board Wi-Fi 
systems. These are all 
centrally controlled by a 
Ground Station Server 
(GSS). 

assist operations 
pertaining to flight 
management or 
environmental control, 
and measurement of 
flight data. 

the GSS through a 
cabled connection, such 
as an Ethernet 
connection, when the 
aircraft reaches the 
ground. 

Smart Cities 

The edge devices and 
surveillance processes are 
controlled by PLCs. The 
system is centrally controlled 
by an Information and 
Communication 
Technology (ICT) system. 

A set of IP surveillance 
cameras and smoke 
detection sensors are 
employed in order to 
generate data streams of 
video and sensory data, 
respectively. 

A cloud-based 
infrastructure contains 
networking components 
to support the operations 
center. 

Smart Satellites 

A Ground Station (GS) 
serves as a central unit, 
which monitors, maintains, 
and controls the operation of 
the deployed CubeSats. 

CubeSats are 
miniaturized satellites, 
which are deployed in 
order to perform specific 
missions in space, and 
are integrated with 
various hardware assets, 
such as cameras and 
sensors to collect 
telemetry data. 

Communication between 
the GS and the 
CubeSats, or between 
two CubeSats, is 
performed via secure 
channels. It is also 
possible for the Ground 
Station to share data with 
external stakeholders. 

 

Having identified the artefacts that constitute the operational system in each use case, the next 
step is to identify the type of data that should be exchanged, as well as which are the 
security, privacy and trustworthiness requirements that should be fulfilled. Also, a 
quantification of the attack vectors needs to be performed, which will afterwards lead to the 
mapping of attestation properties that correspond to each type of attack. Based on this 
mapping, we need to identify which are the possible types of attacks that need to be considered 
for each asset, and subsequently which types of properties need to be attested in order to 
mitigate these attacks. This notion will be expanded throughout this deliverable, and the 
categorization of these properties per asset and type of attack will be presented in detail for 
each use case in Chapter Error! Reference source not found.. 
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3 ASSURED EDGE DEVICES ABSTRACTION MODELLING 

Having defined the model of trustworthiness we want to achieve for a complex SoS-enabled 
ecosystem (to be further elaborated in D2.2 [2]), this Chapter proceeds with elaborating on the 
process for capturing critical platform configuration and execution properties that need to 
be considered – during attestation – in order to provide adequate detection measures against 
the most prominent types of attacks and vulnerabilities (Section 3.3). In addition, we present a 
generic explanation of those properties, as system abstractions (Chapter Error! Reference 
source not found.), to be considered when fleshing out such resources that need to be 
verified in the context of all four envisioned use cases (Chapter Error! Reference source not 
found.). This will set the scene for the definition of the optimal attestation policies and 
resources to be attested that need to be enforced to all hardware assets – of each use case 
asset cartography [2]. 

The intuition behind this mapping is to identify what types of properties are violated by 
specific attacks. ASSURED, as will be described in D3.2 [3], employs novel, scalable 
attestation and verification schemes to corroborate the critical properties of edge 
devices as a means to mitigate attacks and establish “trusted chains of devices” within a SoS-
enabled ecosystem; from the trusted boot and integrity measurement of a CPS, enabling 
the generation of static, boot-time or load-time evidence of the system components’ correct 
configuration (Configuration Integrity Verification (CIV)), to the runtime behavioural 
attestation of those safety-critical components of a system providing strong guarantees on 
the correctness of the control- and information-flow properties (Chapter Error! Reference 
source not found.), thus, enhancing the performance and scalability when composing 
secure systems from potentially insecure components. 

In the following, first define the terms attestation, verification, and events (Section 3.1), as 
well as provide the system specifications considered for the edge devices (Section 3.2) 
comprising the SoS-enabled ecosystem. Since the concept of remote attestation is the core 
building block in ASSURED for guaranteeing the operational assurance of a system and 
hierarchical composition of systems, such a definition will enable us to better frame the concept 
of cyber-security assurance in such complex environments. 

3.1 SETTING THE SCENE AND RELEVANT DEFINITIONS 

As the name suggests, attestation is a trust establishment method that enables an entity (i.e., 
Prover) to gain trust of other entities (i.e., Verifier) by providing reliable and verifiable evidence 
on its correctness and operational assurance. In a typical attestation paradigm, as shown 
in Figure 6: Typical remote attestation paradigmFigure 6, the Verifier knows the expected 
legitimate configuration h’ of the Prover. Additionally, Prover and Verifier are equipped with 
Attestation keys (AKs) used for protecting the integrity of the exchanged attestation reports. 
During the attestation process, the Verifier sends a challenge or a nonce N to the Prover (Step 

➀). This nonce is essentially a random value so as to guaratee the freshness of the attestation 

and protect against replay attacks. As will be described in D4.1 [42], in ASSURED, we aim for 
a random but re-producible nonce so that any entity (through the deployed smart contracts 
depicting the enforced attestation policies) can verify its correct generation; based on the hash 
of the last block header from the ledger.  Upon receiving the challenge, the Prover measures 

its (software or configuration) state (Step ➁), concatenates the measurement h with the 

challenge N, signs the result with its AK and returns an authenticated response δ to the Verifier 

(Step ➂). Since the Verifier knows the expected legitimate configuration of the Prover h' 

(through reference values, that have been provided by the System Administrator, as system 
behaviour descriptions during the cartography of all software assets of the target SoS) and the 
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challenge N, the Verifier computes δ'  and compares it with the response δ received from the 

Prover (Step ➃). If δ matches with  

 

FIGURE 6: TYPICAL REMOTE ATTESTATION PARADIGM 

δ', the Verifier claims that the Prover is trusted; otherwise this is a strong indication of risk 
that the Prover is compromised and further investigation is needed. In this context, all 
monitored traces, collected when extracting the device’s measurement, are sent to the Attack 
Validation Component [43] for further analysis and identification of the exact intrusion point so 
as to then define any additional needed countermeasures. 

Based on the Verifier’s location, attestation schemes are classified into two categories: (1) 
Remote Attestation, in which Prover and Verifier reside in different devices and the remote 
Verifier triggers the Prover’s attestation, as depicted in Figure 6, and (2) Local Attestation, in 
which Prover and Verifier may reside in the same device and the Prover self-triggers 
attestation. ASSURED is envisioned to support both of them through the definition [3] of remote 
schemes for attesting the executional and behaviour correctness of a system (i.e., Control-
Flow Attestation, Swarm Attestation, Jury-based Attestation) and local schemes for privacy-
preserving platform authentication (i.e., Direct Anonymous Attestation) or certifying the 
configuration correctness of a device (i.e., Configuration Integrity Verification) prior to allowing 
it to perform an action; i.e., check the integrity of a loaded binary prior to the device been 
allowed to use the data outputed by this software binary.  

In this context, without loss of generality, in ASSURED, we define the following unified notions 
of attestation and runtime verification: 

 Attestation only refers to the procedure of collecting (Verifier) and/or generating (Prover) 

attestation reports, and sending attestation reports to other entities (Steps ➁ - ➂ in Figure 

6). ASSURED specifies the attestation details as part of the attestation policies to be 
deployed and enforced through the use of smart contacts [42], e.g. what kind of 
information needs to be collected, the types of system properties that need to be attested, 
whether the attestation report is sent to Verifier or threat intelligence engine? 

 Verification is a computing analysis paradigm based on obsering the system’s behaviour, 
through the sequence of events performed as the system executes, and comparing it 
against what constitues the expected behaviour. Such events may, for instance, depict 
the configuration sequence of a device (e.g., list of loaded binaries) or the software 
behaviour correctness by verifying the integrity of a specific control-flow – these 
are included in the collected attestation reports. More specifically, runtime verification 
refers to the process where a Verifier validates the signature of an attestation report and 

verifies the Prover status through information included in the report (Steps ➃ in Figure 6). 
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This is needed for guaranteeing the integrity of the collected system states by the Prover 
– against compromised Provers which may try to impersonate the tracer processes 
running. Compounding this issue, we need to have strong mechanisms for secure 
identify provisioning, integrity and authenticity of the collected measurements, and 
secure key management and distribution all of which are provided in ASSURED 
through the newly designed TPM-based Wallet that can offer all the necessary trust 
properties as well as secure communication with the host tracer [44]. 

Recall that the aim of the ASSURED framework is the cyber resilience of the entire supply 
chain (Section 2.1) against an enhanced threat model, including advanced memory-related 
attacks like run-time control-flow attacks (Section 3.3.1). Therefore, it is imperative to capture 
suitable behavioural and low-level concrete execution properties of a Prover depicting 
both its overall state as well as the state of specific internal components (e.g., software 
processes) needed as part of the various identified security relationships with other systems. 
To this end, it is envisaged to perform both Configuration Integrity Verification (CIV) and 
Control-Flow Attestation (CFA) [3]: Not only static properties such as code and 
configuration integrity, but also dynamic properties like control-flow and data-flow information 
are captured by ASSURED attestation enablers. Therefore the attestation mechanism can 
disclose the corrupted integrity of mission-critical assets, and disrupted tasks executed on the 
edge devices. 

In this context and in order to mitigate the common drawbacks of current attestation schemes 
when it comes to efficiency, scalability and robustness [45], ASSURED uses property-based 
attestation on a specific set of critical configuration and execution properties of the 
target SoS and their comprised devices. The intuition behind this is that most of the current 
limitations mainly stem from the fact that existing attestation mechanisms try to verify the 
integrity, during run-time, of the entire (untrusted) code base of commodity platforms and 
operating systems without also considering additional constraints posed by the existing 
relationships and interactions with other systems as part of the entire service graph chain. 
Considering that competitive supply chain application markets will always produce innovative 
and large systems that consist of diverse-origin software-based components, with uncertain 
security properties, it can be considered that a sub-set of such loaded software functions can 
be efficiently protected (in near real-time) against sophisticated run-time exploitation attacks. 
Hence, the adoption in ASSURED of the artefact-centric modelling notation, so as to frame the 
correct type of system properties for representing the operational and security status of 
core devices and highly critical services.  

Critical platform configuration and execution properties include both behavioural 
properties and low-level concrete properties about the platform’s configuration and 
execution, such as the current firmware version it is running, the version of its configuration 
file or presence of certain hardware properties, integrity of sensor measurements, execution 
paths to specific memory regions, ports and network interfaces, etc. It also includes abstracting 
these low-level values to higher level security properties or functions, e.g., custom algorithms 
running on edge devices. Following this concept and the type of abstract validation properties 
to be to considered (Chapter Error! Reference source not found.), we have identified the 
exact type of system properties that need to be attested (both for the hardware and software 
assets) in the context of the four envisioned use cases (Chapter Error! Reference source not 
found.) – using the model representation as put forth in Section 2.5 and the voccabulary of 
ISO/IEC/IEEE 24765:2017 on “Systems and Software Engineering”.  

The legitimate state of the static properties can be defined both during the design and 
run-time phases of a system’s execution lifecycle, while most other critical execution 
properties will require run-time verification. For instance, the integrity of a loaded binary 
can be verified during boot up but might be also required to be attested when the system wants 
to be securely enrolled to a network (i.e., to be part of a smart manufacturing floor). On the 
other hand, the run-time verification of monitored control-flow events depicting the state 



D1.3: Operational SoS Process Models & Specification of Properties 

© 2020-2023 ASSURED Consortium Page 32 of 87 

changes of a software or hardware system requires run-time monitoring and attestation 
probes. Thus, ASSURED will employ enhanced tracing techniques [3][46] to monitor the 
configuration and behavioural properties of interest and collect the runtime evidence of those 
properties, which will be developed in context of WP3. 

3.2 SYSTEM SPECIFICATIONS AND ASSUMPTIONS 

In what follows, we document the system model and adversary model considered within the 
overall ASSURED architecture. More specifically, we will describe the generic system model 
of devices, comprising the target SoS-enabled ecosystems (will also constitute the baseline 
for the envisioned use cases), whose properties need to be attested, the critical and non-
critical system components, and their requirements regarding operation, safety, privacy, 
and security. In addition, we present an explicit specification of the adversary model 
envisioned in ASSURED that covers different type of adversarial capabilities.  

A high-level description of the system model, as part of the edge device architecture, is 
depicted in Figure 7. More information is also given in D3.1 [44], where the exact modelling of 
the trusted computing base per device is described and in D3.2 [3], where the detailed break-
down of the edge system architecture is put forth for enabling the execution of the ASSURED 
attestation enablers. Besides common hardware components like commodity processors, 
communication busses, memory, and peripherals, we assume the existence of a trusted 
component, namely a Trusted Platform Module (TPM), which is in line with other attestation 
work. TPM contains a unique device identifier that is unforgeable and inaccessible for 
unauthorized entities. This identifier together with other cryptographic keys (Attestation Key, 
Secure Communication Key, Device Credentials, etc.) are safely stored in a secure storage 
that maintains integrity and confidentiality. Moreover, we assume that the hardware provides 
trustworthy and correct security engines such as a True Random Number Generator (TRNG), 
cryptographic hashes, and encryption algorithms. TPM is part of system’s Trusted Computing 
Base (TCB), which means that TPM is trusted by default. Likewise, other core ASSURED 
components like the Tracer, the (TPM-based) Wallet and trusted OS functionalities (e.g., 
kernel functions) are crucial to the overall security process, thus, are considered to be trusted. 
These critical components are represented by grey boxes in Figure 7. 

The white boxes in the overall system architecture represent the code and data of the 
software processes running on the device, including the Operating System. These 
programs perform the core operational functionality of the device, but can be prone to many 
cyber attacks, such as code injection attacks, runtime software attacks, malicious software 
updates, network-related attacks, etc. For instance, a code injection attack can exploit a 
software vulnerability on the device’s software and compromise the program executed in the 
device with malicious code. Likewise, it can exploit a software vulnerability in the Operating 
System (e.g., buffer overflow exploitation) to compromise provided functionalities; from 
compromising buffers used for the tranmission of packet payloads to exploiting the entire stack 
for extracting secrets such key material [47].  Additionally, a runtime adversary can subvert the 
control-flow execution of a device’s program without injecting any new code. A comprehensive 
discussion of the adversary model is presented in Section 3.3. Based on the capabilities of the 
modelled adversaries, the security of the non-critical components is provided by the critical 
components running on the device which, in turn, will be used for monitoring and tracing the 
system state events and properties that need to be verified towards the creation of trust- and 
privacy-aware service graph chains. 

In ASSURED, the critical components attest to the security state of the devices, which 
include both the hardware- and the software-state. Specifically, the Tracer introspects the raw 
memory of the device and parses the memory to recover security-related information about 
the current state of the device. This information is used by the Verifier to detect whether a 
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potential attack occurred and to update the risk level associated with this specific device. For 
example, the Tracer can recover the control-flow of a safety-critical program executing on the 
device; e.g., the worker’s location calculation in the context of the HRI scenario in the Smart 
manufacturing use case. The recovered control-flow can be used in a control-flow attestation 
protocol to detect whether a non-critical component deviates from its expected control flow. 
The Tracer may also extract global device information, which is not related to a specific  

 

FIGURE 7: SYSTEM COMPONENTS, CRITICAL COMPONENTS ARE GREYED OUT. TRUSTED CODE IS EXECUTED 
INSIDE A TRUSTED EXECUTION ENVIRONMENT. 

program such as the currently executing processes on the device and can be used for malware 
analysis. 

The strong security guarantees offered by critical components makes them a prime target to 
attacks. Compromising them would effectively render the security mechanisms they provide 
invalid. Protecting the critical components is therefore fundamental, yet it is challenging: 
Software-only protection mechanisms, such as memory safety incurs high-performance 
overheads, which may be unacceptable for use cases considered in ASSURED. Instead, to 
secure the critical components we assume the existence of a Trusted Execution Environment 
(TEE) on the device (Figure 7). The TEE protects the confidentiality, integrity, and 
freshness of code and data embedded within it by isolating it from the rest of the 
software executing on the device. The critical components are deployed in the TEE 
(comprising the “trusted world” of an edge device), whereas the non-critical components are 
deployed outside the TEE denoting the “untrusted world”. We have to note, however, that 
increasing the code that is running as part of a device’s TEE has an exponential impact on the 
performance of the device, since this will require multiple interactions between the trusted and 
untrusted worlds. In some cases, this may also require the use of additional data buses. Hence, 
in ASSURED, we keep this trusted codebase to the minimum: essentially, we only consider 
as trusted the Tracer which is responsible for the device runtime data and execution 
stream monitoring and introspection as well as the core building block of the Blockchain 
Wallet which essentially is the TPM. For the latter, the accompanying TPM Software Stack 
(TSS) for interacting with the TPM is not part of the considered trusted world. 

The TSS is a middleware that provides a multi-level API to applications for accessing the TPM. 
Through the APIs provided by the TSS, operating system and the users’ applications can utilize 
the security functionality provided by TPM (in the context of ASSURED, the entire TPM-based 
Wallet). Several instantiations of TSS have been implemented in different languages, such as 
IBM TSS [48], Intel’s TSS [49], Microsoft’s TSS [50], Trousers TSS [51], Java TSS [52], and 
Daonity TSS [53] etc. More specifically, it handles all the data from and to the TPM, which 
includes marshalling/unmarshalling data, encrypting transactions for cryptographic sessions, 
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parameter checking etc. The TSS consists of three API layers that provide three levels of 
abstraction, namely the SAPI, the ESAPI and the FAPI. The FAPI is the most feature rich layer, 
and its purpose is to cover most of the use cases of the TPM as it includes ready to use 
functions that require very little configuration. It is designed to be simple to use and make the 
development of applications as easy as possible. The ESAPI is a little more advanced API and 
is targeted to individuals who seek to have a little better control over what the TPM does. 
Finally, the SAPI is an interface that requires expert knowledge of the underlying TPM 
commands and architecture. The functions it contains can be directly mapped to almost every 
command that the TPM can execute and it allows for fine grained control of the module. This 
level freedom allows for misuse and errors, that is why it is of great importance to model all the 
possible threats that may appear. The TSS is closely related to the TPM as they are closely 
interconnected with the TSS being the gateway for all inbound and outbound communications 
of the TPM. 

However, as part of all the ASSURED security mechanisms, when designed, we will also 
provide the option of weakening these trust assumptions by outsourcing some of the trust 
calculations to external trusted entities such as the Privacy Certification Authority which is 
responsible for securely onboarding a device into the overall system network.  

3.2.1 Functional Properties of Systems and Components 

Based on this Cyber-Physical System (CPS) architecture and in order to achieve the main 
vision of ASSURED towards the creation of trust- and privacy-aware service graph chains, 
in complex supply chain ecosystems, the first step is to model such CPSoS and break them 
down to a composition of multiple heterogeneous components. Each of these components can 
have their own functions and operational logic (as part of the entire service graph chain) that 
need to be protected through various security and privacy-preserving policies. Such 
policies can be established by identifying the security and privacy related objectives and 
relationships between the comprised sub-components. Security and Privacy objectives 
define what should be done about security, for targeted components, during the security 
process for the entire lifecycle of a CPS – what type of system states need to be verified both 
during boot-up and run-time; type of data need to be exchanged for authenticating a 
component; privacy requirements when exchanging such data (even when verifying a system 
state, this might reveal information on the software processes running to a device/component), 
etc. Security relationships, as described in Section 2.1, between system components 
complement the security and privacy properties, in a comprehensive and systematic way, by 
uncovering additional constraints and dependencies – between components – that need to be 
considered when designing and integral security solution. 

In addition to security and privacy, all policies need to be aligned with safety requirements so 
as to be able to guarantee the desired level of trustworthiness and correctness of the 
outcome of a service – especially when, in many cases, we are dealing with safety-critical 
decisions (becoming critical for human lives) such as the HRI scenario in the Smart 
manufacturing application domain or the Secure Aerospace use case [54]. In almost all 
branches of industry, such highly automated and nowadays autonomous systems already 
perform several safety-critical control functions and operations, even for tasks they were 
not designed for [55]. In the future, their scope will increase even further to completely and 
fully autonomous safe operations; for instance, in the Secure Aerospace domain, autonomous 
flying, efficient engine control and cloud-based connected aircraft power distribution can be 
some examples of safety critical operations uploading securely data into the cloud, while their 
vital operations are crucial for safe human transportation. These systems will cause radical 
changes to secure and safe SoS, their supply chains, services, and business models in many 
transport industries beyond the aerospace reshaping the secure and safe industrial landscape 
in general [56].  
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As safety-critical SoS become more dependent in big data analytics and machine learning 
approaches, their safety requirements become of paramount importance when exploring the 
security mechanisms to protect the SoS-enabled ecosystem. Research in safety verification of 
interconnected CPSoS has recently exploited standard analytic approaches in the form of 
black boxes to identify situations of error, like inefficient cutting processes [57], corrupted 
measurements [58], as well as falsification systems defining the safety of systems exploiting 
data-driven approaches [59][60][61]. At the same time, security requirements sitting aside 
with system safety requirements have to respect a series of additional functional properties 
for system correctness, timeliness, liveness, fairness and accountability that will 
safeguard the SoS constituents, actors or devices, from unexpected behaviors causing the 
loss of human lives. More recently SoS system designers are looking also into the 
survivability requirements of a safety-critical system (“Provided that the system will suffice 
an external attack or an unexpected error, ensure that the system service will continue to 
operate with no more than a 25% time delay”).  

In the context of ASSURED, the endmost goal is to address this convergence of security, 
privacy, and safety in a complex SoS ecosystem by assessing dynamic trust relationships 
and defining a trust model and trust reasoning framework based on which involved 
entities can establish trust for cooperatively executing safety-critical functions. This will 
enable the exchange of verifiable evidence, on the correctness and trustworthiness of all 
constituent devices and (hardware and software) assets, between entities that had no or 
insufficient pre-existing trust relationships. Thus, beyond the identification of security and 
privacy properties to be achieved, functional safety attributes also need to be considered as 
inherent part of the overall trustworthiness management of a SoS ecosystem. 

3.2.1.1 Functional Safety Properties 

Towards this direction, the focus on correct decision making (automated) operations should 
be governed by overarching properties [62]. The Overarching Properties are intended to 
define a sufficient set of properties for making approval decisions that take into 
consideration system level safety and security requirements. That is, when approval is 
sought for using a particular entity on, e.g., an aircraft, if the entity can be shown to possess 
these properties in their entirety, then granting approval for using that entity on an aircraft is 
appropriate. Hence the name: properties because they encapsulate the “characteristic 
qualities” necessary to justify approval; overarching because they are intended to 
“encompass all” of the necessary properties.  

Overarching Properties are labeled using three different tags: Intent, Correctness, and 
Innocuity. Here are the statements of each.  

 Intent: The defined intended behavior is correct and complete with respect to the desired 
behavior. 

 Correctness: The implementation is correct with respect to its defined intended behavior, 
under foreseeable operating conditions. 

 Innocuity: Any part of the implementation that is not required by the defined intended 
behavior has no unacceptable impact.  

3.2.1.2 Security Properties 

From a security standpoint, the following functionality should be also provided for the system 
to operate correctly. Such functionality will be used to map system level security requirements 
combined with safety properties when the system is safety critical. To that extend, forming 
overarching properties of and SoS ecosystem and verifying its behavior against them will be a 
continuous process, starting from the design phase and validated during its operation through 
correct decision making and policy enforcement. 
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 Secure boot. Secure boot is a security standard that validates that a device boots with 
software trusted by the provider. Effectively, the signature of every software component 
is measured and verified to match the expected value. The check starts with the first 
loaded software from read-only memory (ROM) up to the operating system. If any of the 
measured signatures fails the check, the boot process fails, leaving the device in an 
unusable state. 

 Secure memory and storage. Devices are equipped with TEE, such as ARM TrustZone, 
or other trusted components including a Trusted Platform Module (TPM) which would be 
the basis of the ASSURED Wallet component. This essentially constitutes the security 
token for converting the device to a decentralized root-of-trust. The Trusted 
Component (TC) provides strong isolation for the code and data in it. Furthermore, the 
strong isolation allows programs executing in the TC to securely manage cryptographic 
keys, which are used to encrypt, and sign content saved in the storage. This allows TCs 
to protect their data at rest even though it is not part of the TC itself. 

 Attestation. Attestation allows remote users to detect a change in the expected system 
state. This state includes the hardware, firmware, software deployed, and the dynamic 
state of the system, such as the control-flow of executed programs. The TC software stack 
manages the attestation report. Therefore, it is trustworthy. The report is encrypted and 
signed before sending it to the remote user, which ensures the confidentiality, integrity, 
and freshness of the report. 

 Key management. Devices are equipped with a platform key that is exclusively available 
to the TC. The TC uses this key to derive keys for different security purposes such as a 
sealing key, which is used to access the storage, or an attestation key that is used in the 
device attestation process. All key management trust attributes are defined in D3.1 [44]. 

 Secure measurement. The Tracer has sufficient privileges to access and measure the 
memory of all software components of the device. The measurement can be used to 
detect malicious activity in the device. The Tracer may be executed as part of the device’s 
trusted computing base (Section 3.2). Thus, the Tracer is trusted to perform the 
measurements and analyze them correctly.  

 Safety requirements. Together with security considerations, safety requirements should 
be also considered to be validated and verified. Different access control policies 
generated by the SoS high level requirements (e.g., the satellite or aerospace use-case) 
should enable safety critical directives/policies that the device or the network of devices 
should adhere to.  

3.2.1.3 Privacy-Preserving Properties 

The last branch in the definition of the overarching properties that we need to take into 
consideration when making approval decisions regarding the safety and security requirements 
of the system involves the privacy-preserving properties. The goal of these properties is to 
enable the execution of security functions, without divulging information regarding the 
configuration or status of the communicating devices, thus preserving their anonymity and 
privacy. The privacy properties considered in ASSURED are as follows: 

 Privacy-Preserving Platform Authentication. Together with security considerations, 
privacy requirements need to also be managed – especially considering the sensitive 
nature of the information/data exchanged in safety-critical operations such as the one 
envisioned in the context of the four ASSURED-related use cases [5]. In this context, one 
of the core features would be for privacy-preserving platform authentication. This entails 
the use of appropriate credentials that can prove the authenticity and integrity of a device 
while hiding its identity. For example, consider the BIBA Safe Human Robot Interaction 
(HRI) smart manufacturing use case. When a hardware provider needs to attach its robot 
to the IoT gateway, this new device needs to be securely enrolled and registered into the 
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system. In this case, the enrollment should be performed by ensuring that the device is in 
an authenticated and trusted state, but without requiring the device to disclose any 
information regarding its state or configuration, in order to preserve its privacy. Recall that 
ASSURED operates in a Zero Trust mode which means that there are no trust 
assumptions on the state of a device. Prior to communicating with any device, a trust 
relationship needs to be established based from security claims extracted from the 
execution of the appropriate attestation enablers. However, as will be described in D3.2, 
exchanging such information might entail data on the types of binaries loaded to a devices 
or the actual execution path details during its operation. This information has been shown 
in the literature that can pose a threat to the integrity of the device if shared with an 
attacker, hence, it is vital to be able offer strong security and assurance claims but 
with attestation evidence data privacy. 

 Privacy-Preserving Communication and Exchange of Data. In the communication 
between devices, it should be ensured that a set of conditions needs to be satisfied with 
regards to the privacy of the communicating parties. For example, consider the Enhanced 
Public Safety use case, which involves the use of IP surveillance cameras and smoke 
detectors, as well as PLCs to control these components, as part of a city operation center. 
In this case, privacy is of particularly importance, because face detection and recognition 
algorithms are employed by the provided surveillance services which makes the 
protection of the identity of the monitored parties an issue of utmost importance. The 
privacy properties considered will be defined in D3.1 [44], and can be summarized as 
follows: 

o Anonymity: When a device receives network data, it should be ensured that 
the data originates from an authenticated source, depending on the system 
requirements. It should be possible to perform this authentication, without 
divulging configuration information of the transmitting device.  

o Unlinkability: When a device receives network data, it should not be possible 
to link the received data to the source of transmission. In the aforementioned 
use case, this is essential in order to protect the location of the monitored 
parties, so that the monitored data cannot be linked with a particular IP camera. 

o Untraceability: In the communication between devices, it should not be 
possible to trace actions and details regarding the movement of the data within 
the network. Similarly to the previous case, untraceability is an important part 
of the protection of the monitored parties’ location and identity. 

o Unobservability: It should not be possible for an external party to observe the 
actions of a specific device belonging to a group of devices, such as the video 
streams created by each camera that is part of the city infrastructure. 

3.3 ADVERSARIAL MODEL AND ASSUMPTIONS 

Recall the ranking of most prominent threats and vulnerabilities that has been presented in 
Section Error! Reference source not found., which provides some insight on the threat 
landscape that should be considered and addressed by the ASSURED attestation services. 
Taking this into consideration, we provide an initial definition of the adversarial model 
considered in ASSURED, according to the type and domain of the considered attacks. Note 
that this initial definition of the adversarial model will be further expanded upon in D2.1 [63]. 

With the large number of interconnected devices, many adversaries are targeting Cyber-
Physical Systems of Systems (CPSoS) to access sensitive information of the devices, disrupt 
their normal operation, and even corrupt the data and software to violate their legitimate 
operations. Cyber attackers are increasingly using a complex set of tactics, techniques, and 
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procedures to perform sophisticated malicious actions against cyber-physical resources, such 
as interconnected cyber-physical devices, networks, and software updates. The ultimate goal 
of an attacker is to compromise devices and evade detection from the security mechanisms 
deployed in the CPSoS. To deal with such an expanding attack surface, CPSoS infrastructure 
requires beyond-state-of-the-art security mechanisms to guarantee the reliability of devices.  

 

FIGURE 8: GENERIC ATTACK TREE GRAPH IN CONTEXT OF ASSURED 

The main objective of adversarial modelling is to provide comprehensive and structured 
analysis of adversarial actions, including various factors such as entities, time, frequency, and 
attack stages. The analysis of this section aims to offer a holistic view of the adversarial 
modelling for SoS, as it considers all possible capabilities of the adversaries, while it spans 
across all the possible layers of SoS, considering Software and Network perspectives, and 
adversaries that can physically interact with systems. Such a model aims to identify the security 
threats, understand an adversary’s goal in attacking a CPSoS infrastructure, and define the 
security properties that the novel security mechanisms should satisfy. In the following, we 
present a broad classification of the adversarial types. This classification is also in line with the 
adversary model described in the literature [64][65]. Note that, this section offers the holistic 
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view of the adversarial model of the project and a use case-oriented documentation is the focal 
point of Section 4. In addition, it has to be stated that ASSURED aims to provide key attestation 
technologies which can protect against a finite range of attacks, leaving out of the scope some 
network attacks (such as jamming and eavesdropping) and physical attacks.  

In Error! Reference source not found., we summarize the main goals of an adversary along 
with the adversarial actions. The classification presented in the figure is reflected in the 
following respective subsections.  

Before we proceed to the documentation of the attacks, we need to highlight the special case 
of privilege escalation attacks that could be the aftermath of any kind of attack that can grant 
access to a targeted system. More specifically, an adversary is possible to infiltrate to a system 
by exploiting a weakness or vulnerability of the untrusted stack of the system’s architecture 
and then, penetrate further into the system by acquiring root privileges (escalation). Such an 
offensive action will enable the attacker to interact with the components of the TCB of the 
system through the manipulation of privileged processes that aim to interact with the trusted 
world of the system. ASSURED will be in position to defend against privilege escalation attacks 
that aim to undermine the operation of the critical components of the TCB (e.g., the tracer). 
More specifically, as described in Section  and presented in Figure 7, in the context of 
ASSURED we will define those processes which will be responsible for bridging the normal 
operating system (the untrusted world) with the TCB. This definition will set specific limits and 
narrow down the scope of the monitoring process of ASSURED to only those processes which 
are allowed to interact with the TCB. Thus, through runtime attestation, ASSURED will be in 
position to detect prohibited interactions with TCB or to detect discrepancies in the operational 
profile of legitimate interactions, as a result of privilege escalation attacks.  

3.3.1 Software-related Attacks 

A software adversary is a remote malicious entity that disrupts the regular operation of a secure 
system by infecting it with malware. Typically, such an adversary violates the confidentiality 
and the integrity of the system. The most prominent types of attacks that have been identified 
are enumerated in the following sections.  

 

FIGURE 9: CODE INJECTION ATTACK REPRESENTATION 

Code injection: A code injection attacker introduces and executes arbitrary code into the 
address space of a vulnerable application. In order to achieve this, the attacker exploits the 
missing memory bound check and forces the application code to exceed the memory buffer 
boundaries. To perform the code injection attack, an adversary typically sends to the target 
application the malicious code along with the input data. When the application does not validate 
the input length, the adversary sends larger input data than expected to overwrite the content 
of the stack above the local buffer, as shown in Error! Reference source not found.. The 
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adversary sends input data, the malicious code, some padding that fills the rest of the buffer, 
and a code pointer. This input overflows the local buffer and overwrites the return address to 
point to the beginning of the malicious code. Thus the application reads the malicious address 
and executes the malicious code. 

ASSURED will provide the means to defend against code injection attacks either by static or 
runtime attestation mechanisms. In case a code injection attack modifies the signature of the 
attacked application, this attack vector will be captured by static attestation mechanisms. On 
the other hand, if the attack does not modify the signature of the used binaries, the modified 
control flow of the program’s execution will be captured by the runtime attestation mechanisms 
of ASSURED. 

Cryptographic key extraction: This kind of attack considers an adversary in position of 
exfiltrating and locating cryptographic keys from the run-time environment of software-based 
services even when their software layout and data structures in memory are unknown.  

Key secrecy is required in all stages of the management of its life cycle i.e., during creation, 
dissemination, storage, and usage. In fact, computing systems inherently require that any 
program, including its data and instructions, be loaded into the main memory before being run 
by the processor. Thus, while keys can be protected while stored [66], any conventional 
program that performs keyed cryptographic operations must, at some point, have the key 
material exposed [67] (known as the Key-Exposure Problem, KEP). In this context, adversaries 
are able to infiltrate microcontrollers [68] and to exfiltrate cryptographic keys, during system 
operation systematically, without affecting system operation. The authors in [69] exploited the 
causality between transceiver invocation and utilization of keyed cryptosystems to acquire 
timely memory extractions. In other words, since keyed cryptosystems inherently run post-
reception (e.g., to verify or decrypt an incoming payload), it becomes feasible, by periodically 
exfiltrating conventionally used memory regions for storing run-time data (e.g., the memory 
stack), to capture data belonging to the keyed cryptographic function during the inevitable Key 
Exposure Window (KEW) caused by the KEP. In this way, an adversary could exfiltrate the 
cryptographic key residing in the memory.  

 

FIGURE 10: THE FOUR FUNDAMENTAL PHASES OF KEY ACQUISITION [69] 

The runtime attestation offerings of ASSURED can form a defensive mechanism against this 
kind of attack. More specifically, using Control Flow Attestation (CFA) it is possible to identify 
those processes which are leveraged by the adversary to exfiltrate the required data from the 
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memory region of the system.  In addition, Configuration Integrity Verification (CIV) can 
also be used in order to mitigate attacks against cryptographic key extraction and to attest the 
correctness of the creation of a cryptographic key. For example, when a key generation 
function is executed, CIV can be used in order to check whether the cryptographic key has not 
been manipulated, by verifying that the hash of the key is equal to an already known and 
trusted hashed key value. 

Time-Of-Check-Time-Of-Use (TOCTOU) Attacks: Remote Attestation (RA) techniques verify 
the remote device’s state at the time when remote attestation functionality is executed, thus 
providing no information about the device’s state before current RA execution or between 
consecutive RA executions. This implies that presence of transient malware may be 
undetected. In other words, if transient malware infects a device, performs its nefarious tasks, 
and leaves before the next attestation, its temporary presence will not be detected. This 
important problem, called Time-Of-Check-Time-Of-Use (TOCTOU), is well-known in the 
research literature [70][71] and poses major challenges in the context of remote attestation.  

Unfortunately, current remote attestation architectures share a common limitation: they only 
measure a Prover’s state at the time when remote attestation code is executed by the Prover. 
They provide no information about the Prover’s state before attestation and execution or its 
state between two consecutive attestation executions.  

ASSURED, in alignment with recent endeavours in the field [72], will aim to develop novel 
attestation mechanisms able to resist against TOCTOU attacks, deploying attestation 
techniques that can capture even the ephemeral presence of offensive actions that aim to 
evade the legitimate operational behaviour of systems. The new attestation techniques will be 
based on approaches that guarantee the freshness of attestation while Blockchain will be used 
to ensure that even ephemeral execution deviations can be captured by the attestation 
mechanisms. 

Runtime attacks and control flow manipulation: Data Execution Prevention (DEP) [73] is a 
security feature within an operating system that enforces Writable⊕Executable (W⊕X) 
memory policy to prevent applications from executing code running on non-executable 
memory. Consequently, attackers cannot inject shellcode into target process’s memory space 
on the fly. Although DEP helps in mitigating code injection attacks, it does not prevent code-
reuse attacks where an attacker reuses and combines existing sequences of legitimate code 
already loaded on the memory. Figure 11 illustrates a code reuse attack that subverts the 
target program’s execution control flow without injecting any new code. The target program is 
supposed to invoke either the privileged function or the unprivileged function, depending on 
the value of variable auth. However, an attacker may exploit a vulnerability found in the 
unprivileged function to overwrite the stored return address with the starting address of the 
privileged function. In this way, the program control flow is altered during run-time and a 
privileged function is erroneously executed. 

1. return-to-libc [74]. Return-to-libc is a buffer overflow exploitation on a system that has 
enabled stack execution protection. When Data Execution Protection (DEP) is enabled, 
a standard buffer overflow attack does not work because DEP prevents the injection of 
arbitrary code into a process’s address. To bypass DEP, a return-to-libc attack reuses 
existing code that already presents in target process’s executable memory. After 
exploiting a buffer overflow vulnerability, the attacker modifies the return address stored 
in the stack to point to a function in standard libc library, thus realize a fake libc function 
call. 

2. ROP attacks [75]. Unlike traditional return-to-libc attacks that utilize function calls, 
Return-Oriented Programming (ROP) attacks hijack program control-flow execution by 
stitching multiple ROP gadgets together, i.e., short instruction sequences ending with 



D1.3: Operational SoS Process Models & Specification of Properties 

© 2020-2023 ASSURED Consortium Page 42 of 87 

ret. Attacker needs to carefully search process memory for potential gadgets, either 
reusing the existing instruction sequence, or deliberately misinterpreting code bytes, 
e.g., from different starting points. The expressiveness of ROP attack is proven to be 
Turing-complete when the code space is large enough. In other words, the attacker is 
able to perform arbitrary computation. 

3. JOP attacks [76][77]. Besides backward instruction like ret, forward instructions like 
indirect call and jump also allow attackers stealthily control the program execution and 
bypass defence techniques that harden the integrity of stack frames. Attackers search 
useful gadgets in memory that ends with forward instructions and chain them together 
with the aid of a special gadget called dispatcher to perform desired computation. 

4. Apart from code reuse, runtime attacks are also an effective approach to extract 
information. A number of randomization-based schemes, such as address space layout 
randomization (ASLR), have emerged to mitigate code reuse attacks. The idea behind 
this kind of defences is to randomize the memory layout, thus make it challenging for 
attackers to reference gadgets. To overcome these defences, a new attack strategy, 
just-in-time ROP (JIT-ROP) [78], is introduced to reveal the address of code modules 
and generate ROP exploits on-the-fly. JIT-ROP starts with exploit the memory 
disclosure vulnerability to acquire a single runtime memory address, which reveals the 
content of corresponding code page. By recursively searching for pointers to other code 
pages, JIT-ROP cumulatively discover more code pages until enough gadgets are 
found. Another example of information leakage attack is Heartbleed attack [79] that is 
caused by a memory disclosure vulnerability found in OpenSSL and leads to the 
compromise of secret keys and confidential user data. 

 

 

FIGURE 11: RUNTIME ATTACKS MANIPUATING PROGRAM CONTROL FLOW 
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5. Non-control data attacks [80][81]: Most runtime attacks modify the target program’s 
control data, such as return addresses, function pointers, and indirect branch targets, 
which leads to an execution path deviated from the original one and, therefore, can be 
detected by Control Flow Integrity (CFI) defences. However, non-control-data attacks 
may easily bypass these defences since this kind of attack has no explicit impact on 
program execution path. Taken the memory bit-flip as an example, flipping one bit of a 
security-critical non-control data, such as configuration data or user identity data, can 
lead to the corruption of access control mechanism, privilege escalation, or omitting 
variable initializations. The expressiveness of non-control data attacks is also proven 
in previous work. However, non-control data attacks are harder to construct than 
control flow attacks. 

The aforementioned attack and its variations will be addressed by ASSURED using the 
Control Flow Attestation (CFA) mechanism, which can capture deviations on the execution 
profile of processes. Even though the attacker does not inject malicious code to subvert the 
system, the deviation of the execution flow of the application will be reflected in the captured 
traces and the attestation outcome.  

Malicious software updates [82]: In the context of this attack, an adversary uses deceptive 
methods to fool a user or force an automated process to download and install dangerous code 
believed to be a valid update, but the update originates from a malicious and controlled source. 
The attack may look like a regular upgrade of update process of core application provided by 
the vendor of the system (or device) or by a 3rd party software provider. Although there are 
several variations to this strategy of attack, the adversary aims to position and disguise 
malicious content such that it masquerades as a legitimate software update which is then 
processed by a program, undermining application integrity. The latitude of this attack is 
immense as virtually all software requires frequent updates or patches, giving the attacker 
several opportunities to attack a system.  

Adversaries usually perform phishing-assisted variations on this attack that involves hosting 
what appears to be a software update web site and then sending spam, phishing, or spear-
phishing emails to the organization's users requesting that they manually download and install 
the malicious software update. Automated attacks involving malicious software updates 
require little to no user-directed activity and are therefore advantageous because they avoid 
the complex preliminary setup stages of manual attacks.  

ASSURED will offer the technical means to defend against such kind of malicious software 
updates utilising both configuration integrity verification and runtime attestation. The 
ASSURED attestation mechanisms will attest the application binaries in order to guarantee 
that there are no malicious updates and the signature of the used binaries and configurations 
of the system reflect the correct operational status. In addition, through control flow attestation, 
ASSURED will be able to detect deviations in the execution profile of an application that might 
have been maliciously updated.  

3.3.2 Network-related Attacks 

Network attacks are unauthorized actions on the private channels within an organizational 
network. Malicious parties usually perform network attacks to alter, destroy, steal sensitive 
data or gain access to internal systems [83]. ASSURED Network security is therefore required 
to control the access which can be carried out by these network attacks. We will discuss some 
common network attacks to understand and to propose solutions to develop a network security 
that can give uninterrupted and secure services to ASSURED use cases to protect ASSURED 
networks and exchanged data that are vulnerable to different kinds of the network attacks. 
Network attacks are mainly classified into two types: 
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• Passive:  when sensitive information is screened and monitored, potentially 
compromising the security of an organization. 

• Active:  when information is altered by a hacker or destroyed entirely. 

Some of the most prominent network-oriented attacks that can threaten the Cyber-Physical 
Systems of Systems are the followings: 

Man-in-the-Middle Attack: It is a type of network attacks where the attacker secretly relays 
and alters the communications between two parties communicating with each other. The 
attacker makes independent connections with the victims and relays messages between them 
and finally convince them that they are directly talking to each other over a private and secure 
channel, when in fact the entire conversation is controlled by the attacker. In ASSURED, 
secure communication between devices will be supported by the TPM. TPM will provide the 
cryptographic primitives to enable secure and authenticated communication and defend 
against MITM attacks. 

Malware: Malware is malicious software such as viruses, ransomware and spyware, which 
consists of code developed by cyber attackers, designed to cause significant damage to the 
systems or can lead to unauthorized access to a network or a computer system. Malware can 
be transformed exponentially rapidly between connected devices, once a device becomes 
infected, it can connect to other devices via the internet and seeks access to more devices. 
ASSURED attestation mechanism will be used in order to detect nefarious interactions of the 
malware with safety critical process of the devices.  

Denial of Service (DoS): A DoS Attack stops legitimate users from using a network, server, a 
service, or other resources. The attacker seeks to make a machine or network resource 
unavailable to its intended devices by interrupting the devices connected to the network. Denial 
of service is typically accomplished by flooding the targeted device with extra unneeded 
requests to overload the system and prevent some or all legitimate requests from being fulfilled 
[84]. The protection against DoS attacks is out of the scope of ASSURED. 

Compromised-Key Attack: When an attacker obtains a user password that represents a 
secret key, this key is then considered a corrupted key. An attacker uses the 
affected/compromised key to gain access to secure communication without the attack being 
detected by the sender or recipient. The attacker may decrypt or alter the information by using 
the compromised key to generate additional keys to give the attacker access to any other 
secure communications. In the context of ASSURED, the management of the lifecycle of the 
cryptographic keys will be connected to the underlined Root of Trust to be used. Thus, the 
functionalities of ASSURED will be based on “proof of possession” for the keys generated by 
the underlined Root of Trust.  

Spoofing Attacks [85]: Spoofing is the act of impersonating a communication or an identity 
so that it appears to be established with a trusted, authorised source. Some common spoofing 
attacks are email spoofing attacks that are used in phishing targets, and caller ID spoofing 
attacks that are often used to perform fraud. Attackers may also target more technical elements 
of an organization’s network, such as an IP address, domain name system (DNS) server, or 
Address Resolution Protocol (ARP) service, as part of a spoofing attack. In the context of the 
communication protocol and services of ASSURED, the identity of devices will be linked with 
the TPM. In this way, spoofing and impersonation attacks will be addressed by the intrinsic 
qualities of the TPM.  

Network attacks on the TPM: The presence of the host with such physical proximity to the 
TPM, and the limited ability for the TPM to authenticate itself directly to a verifier, i.e., the TPM 
can only respond to the host’s commands, makes the secure and authentic communications 
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between the TPM and an external verifier very challenging. The host, namely the TPM 
Software Stack (TSS), can be an active man-in-the-middle attacker, i.e., can read the 
messages between the TPM and an external verifier, delay or block the communication, modify 
the messages, or append messages. It can also coordinate a group of compromised TPMs to 
get credentials on compromised devices. The host can block the communication between the 
TPM and an external entity causing a denial-of-service attack that makes a machine or network 
resource unavailable to its intended users, by temporarily or indefinitely disrupting services of 
a platform connected to the Internet. The host may delete some message in the communication 
between the TPM and the verifier, such as in black hole attack when the host deletes some 
messages that are supposed to be forwarded either to the TPM or to an external verifier. The 
host can coordinate a set of malicious (compromised) TPMs to get credentials from a certificate 
authority on compromised devices, such as spoofing attack in which a program successfully 
falsify data, to gain an illegitimate advantage. A host may also change the destination of the 
data sent from a TPM to an external verifier or vice versa. For instance, a host may send some 
data that is supposed to be forwarded to a legitimate TPM to a compromised TPM instead. A 
host may also abuse privacy in anonymous signatures, such as Direct Anonymous Attestation 
(DAA) signed by the TPM, by simply disclosing the TPM identity.  

Network attacks against the TPM will be partially addressed by the ASSURED artifacts. In fact, 
through the use of policies and sessions we will be in a position to regulate the interaction of 
the host with the TPM and the TCB. More specifically, in the context of D3.1 [44], we will define 
the trust models, requirements and assumption that will define the interactions between the 
host and the TPM. In this way, we will limit and concretely define the interactions and the 
conditions under which the communication with the TPM takes place.  

3.3.3 Network attestation 

Decentralization of communications and processing at the network edge have become over 
the recent years core design features of future secure networks as previously detailed. These 
changes come in effect as ever increasing rate/bandwidth requirements and diminishing 
latency, safety and security constraints rapidly pushed the limits of conventional, centralized 
architectures based on few, large, remote critical infrastructure in favor of those relying upon 
many, smaller, distributed radio, and network processing instances. Such measures not only 
benefit of better QoS due to closer range links given increased deployment density, but also 
provide cheaper, secure and more energy-efficient access to new revenue opportunities for 
MNOs and CPSs alike. 

NFV is among the key technologies that enable such latter solutions, at the same time also 
opening the network architecture to third parties as well as providing security guaranties from 
a secure containerization or network slicing point of view. As a result, Virtual Network Functions 
(VNFs) and traditional Virtual Machine (VM)-based solutions are some of the key interoperable 
(standardized for instance under ETSI NFV Working Group) blocks for network security 
mechanisms alongside the Network Orchestrator (NO) [86][87] that could adapt attestation 
mechanisms to their functionality. Network Slicing is yet another virtualization mechanism 
enabling end-to-end secure slices physically running on the same infrastructure but satisfying 
different policies and constraints [88]. These not only enable full-depth logical network virtual 
separation of, network resources, but also compute and storage functionality. Embracing the 
whole framework from a security standpoint, a dedicated prover entity originated from 
ASSURED manages the several network slices, by assigning and monitoring them given the 
requests coming from different agents-roles (i.e., operators –end-users or companies providing 
their own services over-the-top) [89]. ASSURED will take however the secure emerging Edge 
Computing trend of networking to a new level and proposes a distributed security architecture 
based on attestation that can be rolled on commodity infrastructure (e.g., manufacturing, 
transport, surveillance devices and satellites) capable of serving a fully secure network under 
the high standards of next-generation applications and services. As portrayed earlier, such 
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infrastructure not only provides a decentralized efficient approach to communications, but by 
its ubiquity is capable to support critical deployments and scenarios such as critical mission 
support, on-demand network secure self-configuration or attack-tolerant networking. To 
provision all the above, the network itself not only needs to be highly interoperable and 
virtualized, but also requires a high degree of autonomous intelligence under certain security 
policies. 

Policy based secure networking is not a new concept [90], but to this point this has been usually 
based on link metrics and qualifiers such as secure QoS, available rate, bandwidth, expected 
latency etc. However, in the era of speed and increased mobility such qualifiers are highly 
dynamic and typical statistically driven policies tend to become obsolete and inefficient, yet 
aside their challenges to security requirements at the network level. The ambition of ASSURED 
is to utilize a secure ambient, context, connection and situational information distributed among 
the communication nodes running the attestation service in order to predict upcoming security-
critical network behaviour and optimize the securely the network resources for increased 
coverage, allocation of bandwidth, while respecting security requirements.  

3.3.4 Physical Attacks 

This section considers an adversary with physical access to the hardware. The adversary 
attempts to violate the confidentiality and the integrity of the system. It must be stated that such 
physical attacks are out of scope of ASSURED. However, for purposes of completeness we 
elaborate on state-of-the-art attacks for such an adversarial model. Hardware-oriented attacks 
are left out of the scope of ASSURED as all the attacks require physical presence, which is 
hard to achieve in ASSURED because multiple devices work in tandem to serve requests or 
to support the operational goal of the use case deployments. In addition, these attacks are not 
hardware/software agnostic, i.e., the adversary tailors the attack for a specific device and its 
configuration. For example, the power signal measured during a Differential Power Analysis 
(DPA) attack is unique to a program's control flow and the hardware that it is executed on. In 
ASSURED, we consider heterogeneous devices, which makes mounting such attacks far more 
challenging. Next, we describe the state-of-the-art attacks possible for such an adversary in 
the context of ASSURED. 

Side-channel attacks [91][92][93]. A prominent example of a side-channel attack is power 
analysis and particularly DPA, in which the adversary tracks the power consumption of a 
hardware device. The adversary relies on the fact that changes in voltages within the device 
reflect changes in the performed functionality. Therefore, by measuring current changes, the 
adversary learns a small amount of information about the manipulated data, violating the 
confidentiality security property. 

Hardware Glitch attacks [93][94]. An adversary may mount hardware glitch attacks, for 
example, by glitching the voltage to the device. If timed correctly, this could affect the device's 
core functionality or even cause a change for fetching or evicting data to the main memory. 

Memory interposing attacks [95]. An attacker may install an interposer between the DRAM 
and the DIMM socket before system boot. The interposer may then act as a man-in-the-middle 
for requests and responses to the main memory. It can either snoop memory accesses by 
duplicating the command bus signals and sends them both to the DRAM and a dedicated 
signal analyser. Alternatively, the interposer could completely change the requests made to 
the main memory, e.g., to read or write different values. 
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4 SYSTEM PROPERTIES TO BE ATTESTED 

The aim of this section is to flesh out the properties to be attested in context of ASSURED, 
which represent the trust level of a system. Specifically, a set of functional specification and 
validation properties that define the resources that need to be attested has already been 
documented in Section 3.2, in the form of system specifications and assumptions, functional 
safety properties, security properties and privacy-preserving properties. The successful 
attestation of these properties can be used in order to provide verifiable evidence towards the 
trustworthiness status of an entire system. 

Taking the above into consideration, this Chapter is dedicated to providing definitions of all the 
Validation System Properties that should be considered in the context of attestation, in order 
to protect against the attacks that were presented in Section 3.3. This constitutes a first step 
towards mapping these properties to the particular system architecture and requirements of 
the use cases presented in Chapter Error! Reference source not found.. 

4.1 VALIDATION PROPERTIES 

Chapter 3 introduces the capabilities and “as-is” properties of the underlying system, as well 
as the adversary model of ASSURED, which is used in order to define the trust anchor of the 
ASSURED attestation services, the potential threats, and the security objectives that should 
be achieved. Compounding the output of Section 3.1 and the state-of-the-art analysis on 
attestation schemes conducted in D1.1 [96], we will extract a set of configuration and execution 
properties to be attested, that enables the operational, privacy, and security protection against 
attacks specified in our adversary model. For each use case scenario, depending on the 
potential threats and protection goals, a set of properties can be validated in ASSURED 
attestation schemes to fulfil the operational, security, and privacy requirements. 

Based on the type of captured information, attestation protocols can be divided into two general 
classes: static attestation and dynamic attestation, also referred to as runtime attestation. 
Similarly, we divide the validation properties, i.e., the properties to be validated in attestation 
protocols, into static properties and dynamic properties. Static properties include some low-
level concrete properties, such as the firmware version, binary signature, and the presence of 
specific hardware properties, which reflect the correct configuration of software and hardware 
deployed on devices as part of the supply chain ecosystem. Many attacks start with injecting 
malware or altering security configuration to gain unauthorized access or privilege in victim 
systems, such as static code injection and malicious software update attacks. As an example, 
these attacks, however, cause modified binary signature, violating the static property, 
ASSURED is able to tackle these attacks by validating static properties. Dynamic properties 
instead measure the correctness of operations and tasks executed in edge devices deployed 
in the supply chain ecosystem. Advanced attacks intend to perform adversarial computation 
by modifying the execution flow/control flow of legitimate software, so that classical defences 
based on static properties cannot detect and mitigate them. In this case, dynamic properties 
like control flow and data flow information play an important role, for instance mitigating various 
runtime attacks.  Note that static properties are sometimes also needed in runtime attestation 
protocols as a measurement of trust in the correct state of the underlying devices. We will 
present a technical introduction of these validation properties in the rest of this section. 

Prover captures the required information, as specified by the validation properties, statically or 
during runtime, and then generate an attestation report to be sent to verifier. The report may 
consist of captured states itself, which may be the memory snapshot, a list of taken branches, 
or a hash of binary. Alternatively, the prover can validate the captured state and only report 
the check result to verifier. The latter option minimises the verifier’s workload and network 
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traffic, but needs to be implemented under more strict assumption, namely the prover is unable 
to interfere validation process and forge check result. 

Note that, the dependency between components needs to be considered as well when 
analyzing the system and determining validation properties. For instance, an application to be 
attested relies on an OS service. Even though the application passes the validation, an attacker 
can stealthily interfere in the application through the compromised OS service. Hence, each 
use case partner needs to meticulously analyze the dependency between components and 
define the TCB. Dependent components should either defined as part of the TCB, or they 
should be explicitly attested so that their trustworthiness is ensured. 

4.1.1 Static Properties 

Static properties refer to properties that indicate the static state or non-execution behaviours 
of systems, e.g., unmodified binaries, legitimate hardware components, or device 
configuration. These properties can be captured at any time during the operational lifecycle, 
prior to runtime, during, or after runtime. As the name suggests, static properties remain 
unchanged during a long timeframe. Therefore, there is no strict restriction to the capture the 
timing and duration of static properties. Besides, the size of the captured information is much 
smaller compared to the dynamic properties, since the static properties do not change 
frequently.  

Multiple attacks included in the ASSURED adversary model can be mitigated by validating 
static binary, such as static code injection, malicious software update, and malware. Thanks 
to their time-invariant nature, static properties are generally easier to collect, report, and 
validate, but also limits its capability as static properties cannot disclose adversarial behaviours 
occurred during runtime. 

In context of ASSURED, we measure the static state of edge devices deployed in supply chain 
ecosystem with the following properties.  

Static binaries, including program code and static data, should be verified before being 
loading into the memory. Injection of malicious binaries through existing vulnerabilities on a 
system targeted by an attacker is a common method for malicious parties to steal confidential 
data, perform adversarial operations, or obtain unauthorized privilege. Therefore, we should 
assure that the program binary is provided by authorized partners. Also, it should be ensured 
that the binaries, the code, and the static data are unmodified, and the program version is up-
to-date and not vulnerable, especially for the binary loaded into TCB, e.g., the tracer. 

Dynamically loaded libraries, which can be utilized by attackers to evade static binary 
validation, need to be attested as well. Nowadays programs increasingly rely on dynamically 
loaded libraries in order to reduce the binary size and maximize code reuse. These libraries 
are linked to programs during runtime and are shared among multiple programs 
simultaneously, which avoids code base duplications, but also increases the attack vector. In 
order to mitigate library-based attacks, we should assure that the libraries are properly 
measured before being used by other programs. It should also be ensured that the version of 
libraries is up-to-date and not vulnerable.  

Hardware components are also a crucial static property, especially for those hardware 
components served as the system trust anchor, such as the TPM, which is the cornerstone of 
device authentication and establishment of the trust chain. Otherwise, an attacker can easily 
bypass or compromise attestation schemes or secure communication within the Blockchain 
network by using an incorrect TPM or extracting secret credential from the TPM. Therefore, 
we should also attest that the installed hardware components are legitimate, for example via 
the serial numbers, and the firmware and secret credentials are valid and uncompromised.  
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4.1.2 Dynamic Properties 

In contrast to static properties, dynamic properties reflect the execution behaviour of prover 
devices and are able to disclose runtime attacks, thus attestation of dynamic properties 
requires to record program behaviours during runtime, for example the taken indirect branches, 
and memory accesses. Dynamic properties may drastically change over time, even in a benign 
case. The key challenge is to differentiate benign changes with malicious changes. One 
common approach is based on program Control Flow Graph (CFG) that specifies the legitimate 
execution paths of a program. Any execution behaviour that does not exist in CFG is 
considered to be incorrect.  

Dynamic properties can make up for the deficiency of static properties, but they are harder to 
attest. When implementing an attestation protocol for dynamic properties, the way to capture 
and represent information plays an important role. Unlike static properties, capturing dynamic 
properties always incur a large number of recorded events, especially for complex software 
with long running times. To enable efficient verification, we need to carefully select dynamic 
properties based on the adversary model, and astutely design the representation form of 
captured data. Besides, TOCTOU attacks may also compromise the attestation of dynamic 
properties. In other word, an attacker deliberately chooses to perform malicious operations 
between two attestations.   

Based on the state-of-art runtime attestation schemes and use case scenarios in context of 
ASSURED, we focus on the following dynamic properties, which enable the supply chain 
ecosystem protected by ASSURED to mitigate various attacks modifying the control flow and 
data flow of program, including code injection attacks, sensitive data extraction, code reuse 
attacks, non-control data attacks, as well as malicious software attacks. 

Control flow information (CFI) is a dynamic property widely used in various attestation and 
detection techniques that aim to mitigate runtime attacks, such as runtime code injection 
attacks and code reuse attacks. Control flow information contains the addresses of code 
sections that are executed during runtime. If an attacker exploits the vulnerability to execute 
malicious payloads, either by executing injected code or by reusing existing code, the action 
will be recorded in the control flow report and give the verifier the chance to discover the attack. 
Usually, control flow information is represented in the form of a list of indirect branches, e.g., 
function calls, function return addresses, indirect jumps, whose destination addresses are 
calculated during runtime. However, as the size of program increases, the size of the control 
flow log increases dramatically, which poses a challenge on how to properly represent the 
control flow information and complicates the validation process. An attestation scheme can 
tackle this issue by restricting the size of program to be attested, or by using hashes to 
decrease the size of control flow log. Another option is to enforce certain policies, such as a 
CFI policy, on prover device and only report to verifier whether all control flow branches comply 
the CFI policy. 

Data flow information (DFI) tracks the data stream within a program, including variable 
definitions, usages, and data dependencies between instructions and variables. For instance, 
data flow reveals whether the initial value of a variable originates from an untrusted source, 
and how a malicious input taints other instructions or variables. With the aid of data flow 
information, the attestation scheme may be able to detect non-control-data attacks that corrupt 
memory access operation by loading and storing instructions, without causing any unintended 
anomalies in the control flow [97]. Data flow information can be directly recorded and reported 
to verifier, for instance, in form of a list of memory access instructions, or checked on the prover 
side and only report the check result to verifier. 

The correctness of program execution depends on multiple factors, such as the binary code, 
input data, relevant executables, and data objects [98]. Report containing relevant information 
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can increase the chances of discovering runtime attacks. In context of ASSURED, we mainly 
consider the following relevant properties: code and data measurement during runtime 
aiming at disclosing runtime injecting attacks, configuration files fed to attested programs 
during runtime, data exchanges with other entities such as interactive input during runtime, 
as well as system-level events such as the device’s software update history and the 
occurrence of system reboots. 
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5 APPLICATION USE CASES 

The aim of this section is to create the vocabulary of the system validation properties that need 
to be considered during attestation in the context of the envisioned use cases so as to be able 
to provide the necessary security claims. The set of validation properties that represents the 
trust status of system has been documented in Section 4.1, and will serve as a reference. 
Based on this, we elaborate on the instantiation of the four envisioned use cases of ASSURED 
and we showcase how the systems of these use cases will be protected against attacks by 
attesting configuration and execution properties. This output will help the design and 
implementation of ASSURED attestation schemes in D3.1 [44], as we figure out the 
adversary types, what kind of properties need to be attested to ensure the operational and 
security posture of supply chain ecosystem, and what kind of attestation schemes are 
necessary for the ASSURED framework. In addition, ASSURED attestation schemes need to 
be integrated into the use case demonstrators. This section will form the basis for the 
integration process. 

In what follows, we apply the models defined in previous sections to the four use cases of 
ASSURED in order to identify the crucial services and attack scenarios that are most likely to 
have a severe impact on the trustworthiness of the system. Table 2, Table 4, Table 6 and Table 
8 elaborate on the most critical attack scenarios for the four use cases, including details 
regarding the execution of these attacks, the affected use case components and services, the 
impact of each attack, and what type of attestation scheme can be used to mitigate each attack. 
In this direction, each attack scenario is further analyzed, by outlining the properties that are 
affected by each kind of attack, providing concrete descriptions of the properties in the context 
of each use case, and information on how to attest those properties. This is documented in 
Table 3, Table 5, Table 7, and Table 9. 

5.1 SAFE HUMAN ROBOT INTERACTION (HRI) IN AUTOMATED 
ASSEMBLY LINES 

The “Smart Manufacturing” Demonstrator located in Bremen, Germany, provides an 
infrastructure for Human Robot Interaction. The demonstrator for this use case is located in 
the demonstrator hall within the premises of BIBA and consists of three major components: 

• Ultra-Wide Band Wireless Location System 

• Industrial Robotic Arms 

• IoTGateway 

Figure 12 illustrates the major components that are deployed in the Smart Manufacturing 
scenario illustrating Human Robot Interaction. The Ultra-Wide Band Wireless Location System 
transfers the location information collected by the wireless tags to an MQTT broker that runs 
on a dedicated hardware, referred to as the Data Aggregator. The Robotic Arms are connected 
and controlled by Programmable Logic Controllers (PLC) over the PROFINET network and 
can only be accessed by an OPC-UA Server running on the Industrial PC. The IoTGateway is 
a flexible edge device that exists on the same network as that of the Industrial PC, and acquires 
live data from both the Ultra-Wide band wireless location system as well as the robotic arm 
system. The core function of the IoTGateway is to process the collected data with collision 
detection algorithms to avoid the collision between moving personnel or human workers, and 
a robotic arm located in the workspace. Thus, the operational assurance of IoTGateway plays 
an important role in the physical safety of the personnel in the context of the smart 
manufacturing use case. 
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IoTGateway consists of distinct micro-services in the form of containerized software with 
dedicated software clients. We refer to the services needed to control the OT (Operations 
Technology) part as South-Bound services, which may include the services that control the 
movement of the robotic arms. Moreover, the IoTGateway offers North-Bound services for 
communication with private and public clouds, which enable access from external 
stakeholders. Note that IoTGateway supports secure communication channels, such as TLS 
channels, with South-Bound and North-Bound services. 

 

FIGURE 12: MAJOR COMPONENTS FOR SMART MANUFACTURING 

5.1.1 Protection Goals and Attack Settings 

The aforementioned system components contain a wide variety of services. An unidentified 
vulnerability can be exploited by an attacker in various ways, which may lead to severe impact 
on the integrity of the system. Figure 13 depicts the attack graph tree for the smart 
manufacturing scenario, which contains various potential adversaries.  
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Software Attacks target any edge component of the system or network infrastructure that is 
able to execute code to control or collect information from connected sensors, actuators or 
other cyber-physical systems through dedicated APIs or network protocols, such as MQTT, 
OPC-UA, CoAP etc. In the smart manufacturing case, the IoTGateway plays a significant role 
in the collection of data, as well as in the execution of custom algorithms that are necessary 
for processing decisions made by applications at the edge level, such as sending control 
signals to the Robotic Arms. Code Injection adversaries aim to disrupt the normal execution 
of such algorithms and data collection firmware by injecting malicious code on the IoTGateway 
and causing safety hazards for personnel working in the workspace. Similarly, an adversary 
may inject malicious code into the data acquisition program to provide false information to the 
system, leading to false recognition of the control algorithms and the disruption of data integrity 
of the workspace. In case code injection is prohibited by some security features like DEP, the 
attacker can manipulate the control flow of collision detection and data acquisition programs 
and produce malicious behavior, by changing the execution order of the existing legitimate 
code loaded on the device’s memory. One group of software attacks is key extraction, where 
an attacker exploits memory vulnerabilities to extract secret keys from edge devices, such as 
TLS keys. 

Software Update Attacks involve tricking the system administrator into installing a malicious 
firmware update, or forcing an automated process to do so, in order to disrupt the Operations 
Technology part of the workspace. This may cause large downtimes, malfunctions in the 
robotic arms, or replacement of the services running on the IoTGateway with malicious code. 
One common method to execute such an attack would be to gain access to the IoTGateway 
and adapt the configuration of running micro-services on them. A third-party vendor may 
provide a malicious firmware update as well. 

Network Attacks are commonly categorized into passive and active attacks. The former 
category refers to an attacker who passively screens and monitors the network data, which is 
performed by the Ultra-Wide Band wireless tags in the workspace. An external adversary 
however requires the introduction of a device into the physical workspace that can listen to 
network packets by eavesdropping on the network channels, as well as spoofing a device on 
the wireless network to inject false data on the UWB location system. The latter category refers 
to attackers who actively alter network communication, and can perform DoS attacks, spread 
malware over connected devices, gain access to secure communication channel with 
compromised keys, and perform network attacks against underlined TPM. 

Physical Attacks require an adversary to have knowledge of the UWB location system and 
can introduce an UWB tag that can inject malicious data into the system or can extract a 
device’s key from the tags. Common physical attacks include side channel attacks, memory 
interposing attacks, and hardware glitch attacks. Comparing with software attacks and 
network attacks, physical attacks are much more difficult to perform. 

Among them, the most critical attack scenarios related to the smart manufacturing use case 
are listed in Table 2. Besides a general description of the attack scenario, we also state the 
components and services affected by attacks, their impact, and the protection goals we want 
to achieve in the context of ASSURED. 
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FIGURE 13: ATTACK TREE GRAPH FOR SMART MANUFACTURING USE CASE
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TABLE 2: SMART MANUFACTURING CRITICAL ATTACK SCENARIOS 

Attack 
Scenario 

Description Criticality 
Counter-
measure 

Key extraction 

Scenario: This attack targets the IoTGateway or edge 
components that have access to secret key material 
used for setting up secure communication with other 
entities. The attacker performs memory extraction to 
acquire the cryptographic key material exposed during 
the runtime of programs performing cryptographic 
operations.  
 
Impact: Compromised backward and forward 
confidentiality of exchanged data. 
 
Protection Goal: cryptographic key material can only 
be accessed by authorized partners and only in 
predefined ways.  

High 

Runtime 
attestation when 
accessing secret 
key material. 

Code Injection 

Scenario: This attack targets the IoTGateway or edge 
components that are connected to the cyber physical 
infrastructure such as Robotic Arms, PLCs controlling 
these arms, etc. A malicious code injection can cause 
downtime in the OT (Operations Technology) due to 
unauthorized calls to the CPS infrastructure and data 
manipulation causing a lapse in data security and 
personnel safety within the workspace environment. 
 
Impact: Compromised personnel safety, as well as 
production downtime, data security and integrity. 
 
Protection Goal: Avoid unauthorized code injection 
during runtime on edge components. 

High 

Static attestation 
when executing a 
micro-service 
running within a 
container e.g. OCI 
compliant 
container. 

Control-flow 

Scenario: This attack targets the IoTGateway or edge 
components that run specific software services related 
to control algorithms or data processing and accept user 
input during runtime. Control-flow manipulation can 
cause malicious operations in the OT (Operations 
Technology) and data manipulation causing a lapse in 
data security and personnel safety within the workspace 
environment. 
 
Impact: Unwanted operational behaviour of edge 
devices, compromised personnel and data integrity. 
 
Protection Goal: Abnormal control flow behaviour 
should be detected, and new protection policies should 
be deployed. 

High 

Runtime 
attestation for 
verifying control 
flow integrity. 

Malicious 
Updates  

Scenario: This attack targets the IoTGateway or edge 
components that run specific software services related 
to control algorithms or data processing that is required 
for decision making and signal control to CPSs. Any 
unverified or unauthorized software updates on the 
gateway can lead to downtimes or hazards to personnel 
safety within the workspace in which the IoTGateway is 
deployed. 
 
Impact: Compromise in personnel safety as well as 
production downtimes as well as ransomware causing 
lapse in system integrity as well as safety hazards. 

High 

Static attestation 
when performing 
updates on the 
Gateway for 
verifying binary 
signature, and 
runtime 
attestation for 
avoiding changes 
to control-flow 
logic. 
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Protection Goal: Software updates need to be verified 
and deployed only upon proper authorization to the edge 
components in the workspace. 

5.1.2 Model of Use-cases Properties 

ASSURED offers multiple attestation schemes to attest various static and dynamic properties. 
The key is to select the appropriate properties according to the attack tree graph presented in 
the previous section. Table 3 documents the properties to be validated in the context of the 
smart manufacturing use case. 

TABLE 3: MAPPING OF VALIDATION PROPERTIES FOR SMART MANUFACTURING USE CASE 

Attack 
Scenario 

Target 
Systems 

Processes 
ASSURED 

Security Enabler 
Validation 
Property 

Key 
extraction 
(Runtime) 

IoTGateway Key establishment Static Properties 

Static and dynamically 
loaded binaries 
responsible for secure 
communication and 
encryption of data. For 
example, X.509 TLS 
private key certificates 
on IoTGateway / 
special Access Tokens 

Control-flow 
(Runtime) 

IoTGateway 
Collision Avoidance and 
Prediction Algorithm 

Dynamic Properties 
Control flow branch 
information within the 
container 

Code 
Injection 
(Runtime) 

IoTGateway 

Micro-Services: 

• Robotic Motion 
Tracking 

• Personnel 
Location 

• Collision 
Avoidance and 
Prediction 
Algorithm 

Static and Dynamic 
Properties 

Configuration Files for 
each Micro-Service 

Changes to static code 
within a micro-service 
container 

Changes to Data Flow 
exchange with other 
micro-services 

Malicious 
Updates  

IoTGateway 

Micro-Services: 

• Robotic Motion 
Tracking 

• Personnel 
Location 

• Collision 
Avoidance and 
Prediction 
Algorithm 

Static and Dynamic 
Properties 

Configuration Files for 
each Micro-Service 

Libraries / Dependency 
changes in the micro-
services during 
updates 
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5.2 SECURE COLLABORATION OF “PLATFORMS-OF-PLATFORMS” 
FOR ENHANCED PUBLIC SAFETY 

The Athens testbed focuses on the topic of public safety and the protection of related city 
systems. Hence, a city operation centre is connected with several computational components 
residing either in the back-end infrastructure or at the edges of the network in order to offer 
public safety services. The infrastructure consists of a wide variety of heterogenous devices 
including, edge-devices, gateways, storage, and network infrastructure. The edge devices are 
crucial for meeting the operational goals of the use case as the system includes surveillance 
cameras and sensors that generate data streams of video and sensory data respectively. 

As can be seen in Figure 14, the public safety ecosystem consists of the following Cyber 
Physical System of Systems: 

• Edge devices located in strategic positions for the protection of the Serafio complex, 
and more specifically: 

o IP surveillance cameras 
o Smoke detection sensors 
o PLCs for controlling the surveillance systems and processes. 

• The back-end Information and Communication Technology (ICT) system and 
cloud-based infrastructure which includes the networking components and 
computational resources to support the operations centre.  

The edge devices communicate with the ICT infrastructure via secure communication 
channels. The secure communication is achieved based on the key establishment service that 
runs both on the edge devices and the back-end systems. In fact, this service runs first in order 
to securely instantiate the overall deployment and then proceed with the core safety critical 
operations.  The operation of the IP surveillance cameras generates video data streams, from 
the edges of the network back to the ICT and cloud-based backend, in order to provide the 
necessary input to operation center and feed the object detection and face recognition 
processes. The collected data and the results of the video stream processing are meant to be 
shared with external stakeholders in the context of the data value chains of the ASSURED 
project.  

In addition, the smoke detection sensors are critical for the safety of the Serafio complex. 
Specifically, these sensors transmit signals to the backend ICT infrastructure periodically to 
detect a fire and provide the necessary indications to the decision makers of the operation 
center to trigger the fire alarm and the established safety procedures (e.g., evacuation plans). 

The ICT infrastructure is based on network components, such as IoT gateways and network 
switches, and servers that support the secure communication and the processing on the data 
streams, respectively. The network components support the bidirectional secure 
communication between the edge devices and the back-end systems. Specifically, the 
generated data streams are transmitted by the edge devices towards the back-end systems 
for further processing, while device management processes, such as software/firmware 
updates, device (re) configuration and commands, are pushed through the network to the edge 
devices.   

Overall, in this context, the aforementioned Cyber Physical System of Systems of the public 
safety use case work in synergy to offer the following services that need to be protected: 

 Video Data Stream Generation; 

 Sensor Data Generation; 
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FIGURE 14: PUBLIC SAFETY ECOSYSTEM 

• Key Establishment (Cryptographic key management for secure communication) 

• Remote asset management 

• Face Recognition and Face Detection 

• Object detection 

• Fire detection and Smoke/Gas detection 

The aforementioned services engage a wide variety of devices spanning from the edge to the 
cloud-enabled backend, and thus, posing a significant challenge of safeguarding the entirety 
of the safety-critical components of the system. As it will be documented in the following 
sections, these devices and the offered services can be targeted by adversaries in various 
ways. Figure 14 intuitively demonstrates a key exfiltration attack that can take place against 
the PLCs of the infrastructure, in alignment with the threat landscape that will be presented in 
the next section based on recent research endeavours in the field [69]. The goal of ASSURED 
is to provide a set of protection mechanisms that can guarantee the operational assurance of 
these devices and processes.  

5.2.1 Protection Goals and Attack Settings 

Attacks and types of malicious actions targeting the city system is depicted in the attack graph 
tree figure for the public safety scenarios and analysed below. 

Software attacks target any edge component of the system and network infrastructure. The 
software-based attacks are applicable to devices and components of the system running 
backend codes, such as routers, gateways, servers, cameras, sensors etc. One group of 
software attacks refers to key extraction when an attacker exploits potential vulnerabilities on 
the memory of systems in order to extract secret keys from the edge devices, or additionally, 
to get access to edge components for accessing data related to memory.  
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FIGURE 15: ATTACK TREE GRAPH FOR PUBLIC SAFETY USE CASE 
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A code injection adversary aims to inject malware on the edge devices or the network 
infrastructure, compromises PLCs attached to the municipality cameras and/or sensors, in 
order to target the data integrity or manipulate the ID of an edge device. Finally, the attacks 
exploiting the control flow of DAEM’s use case configuration either changes the control flow 
execution of legitimate software or manages to compromise the data of a sensor/camera/other 
edge device (e.g., Phishing on the Raspberry gateway).  

In the context of remote asset Management, software update attacks may target any edge 
component of the system and network infrastructure similarly to software attacks. This 
category includes adversaries on malicious updates and unauthorized accesses that attack 
the municipal system as: 

• A third-party vendor that provides a malicious firmware update  
• An attacker that replaces legitimate software updates with malicious code  
• An unauthorized user that performs software updates  
• An attacker that monitors the proprietary data of the distributed updates  

In addition, in the context of software update attacks, adversaries may target the timeliness 
of updates & commands. Such an adversary can potentially target the public safety domain 
by monitoring of the communication channels in order to attack the response time of devices 
for verifying the correct update distribution and execution. In addition, she can also insert 
previous software updates as new ones that can potentially affect the type of output from the 
sensors/cameras and, thus, impact the decision-making process.  

Network attacks can also target any edge component of the system and network 
infrastructure. Those attacks can be categorized into passive and active attacks. The 
former category considers attackers that passively monitor the network by eavesdropping and 
sniffing network packets exchanged between the edge devices and the back-end systems. 
The latter category considers active attackers who can launch DoS attacks against devices 
and services, spread malware to the network devices, evade the secure communication by 
compromising cryptographic keys, and even compromise edge devices to interrupt the 
communication with the underlined TPM.  

Data management attacks mainly target the systems of external stakeholders (LEAs, police 
etc.), data storage facilities and edge devices. An attacker could impersonate the behavior of 
a trusted actor or component of the city system, as a man-in-the-middle attack, in two potential 
ways: 

• By manipulating memory-related vulnerabilities, at the edge devices, and getting 
access to the host TPM-based Blockchain wallet. This can lead to unauthorized reads 
on the recorded data.  

• By exploiting stored credentials from legitimate External Stakeholders in order to get 
privileged access to the Data Storage.  

The second kind of data management attack refers to denial of service. An attacker (outsider) 
tries to perform too many access requests to the Blockchain infrastructure to clog the system, 
so that it is not able to handle legitimate requests.  

When it comes to Physical Attacks, those can be placed into three distinct categories. 
Physical access to the devices is required in all these categories, therefore they are outside 
the scope of ASSURED. However, for completeness purposes, we shortly elaborate on them. 
More specifically, Memory interposing attacks can be performed by an adversary by 
snooping or controlling the accesses to the main memory of edge devices. In addition, 
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Hardware Glitch Attacks can be performed to interfere with the edge devices by glitching the 
voltage. Side channel attacks can be also performed, and an attacker could read confidential 
data or extracts device’s keys through differential power analysis.  

TABLE 4: PUBLIC SAFETY CRITICAL ATTACK SCENARIOS 

Attack 
Scenario 

Description Criticality 
Counter-
measure 

Key Extraction 
(Runtime) 

Scenario: This attack targets the edge devices (e.g., 
cameras, smoke detection sensors) and their attached 
PLCs that are responsible for securely managing secrete 
key material used for the subsequent communication of 
the extracted data to the back-end Decision Support 
Engine. The attacker, by exploiting memory-related 
vulnerabilities (e.g., buffer overflow), snoops on the 
publicly accessible data structures (i.e., stack) for 
extracting secret keys prior to their usage. 

Impact: Compromise backward and forward secrecy 
and data confidentiality of exchanged data. 

Protection Goal: Compromise of an edge device should 
not allow the exploitation and/or leakage of any secret 
material used for the confidentiality and integrity of 
transmitted video and sensor data 

High 

Runtime 
Attestation for 
verifying the 
integrity of 
loaded binaries 

Code Injection 
(Runtime) 

Scenario: this attack exploits a software vulnerability 
and injects a malware on the edge devices or the 
network infrastructure.  
 
Impact: target data integrity or manipulate the ID of an 
edge device.  
 
Protection Goal: Compromising an edge device should 
not enable an attacker to access the core code 
and manipulate its ID. 

High 

Runtime 
Attestation for 
verifying control 
flow integrity of 
safety critical 
services on the 
edge devices. 

Control-flow 

Scenario: This attack targets the edge devices (e.g., 
cameras, smoke detection sensors) and their attached 
PLCs by changing the control flow execution of the 
legitimate software that runs on them. The attacker 
performs code reuse attack on an edge-device to bypass 
e.g., DEP and change the execution behaviour of 
legitimate software.  

Impact: Compromise the data of a sensor/camera/other 
edge device and divert the operational behaviour of 
safety critical application.  

Protection Goal: Compromise of an edge device and 
violation of its control flow integrity should be detected, 
and new protection policies must be deployed.  

High 

Runtime 
Attestation for 
verifying control 
flow integrity of 
safety critical 
services on the 
edge devices. 

Malicious 
Updates  

Scenario: An attacker replaces legitimate software 
updates with malicious code  
 
Impact: the attacker can intervene in the operation 
system functionality by deploying a malware in the 
format of a system or component operational update 
(e.g., a camera function)  
 
Protection Goal: Prevent remote access to assets of the 
system by external attackers 

High 

Static attestation 
for the 
verification of the 
correct (or 
expected) 
signature of the 
application. 
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Unauthorised 
Access  

Scenario: In the context of this attack, the adversary 
aims to get unauthorised access to the software update 
processes. The attacker is able to interfere with the 
software updates and get access to the parameter 
updates that might need to be circulated to the edge 
devices, e.g., periodicity of smoke data measurement 
collection, speed of angle change of the camera, etc. 
Thus, the attacker monitors the proprietary data of the 
distributed updates. 

Impact: Manipulation of the software update process 
which enables the attacker to compromise the 
operational behaviour of safety critical applications and 
modify the mode of operation of edge devices. 

Protection Goal: Establishment of secure 
communication between edge devices and the back-end 
systems in order to avoid attackers intervene in the 
software and parameters update processes. Provide 
guarantees on the integrity of binaries and configurations 
of edge devices.  

High 

Runtime 
attestation and 
configuration 
integrity 
verification of the 
updated binaries 

Passive 
Network 
Attacks 

Scenario: In the context of this attack the adversary is 
positioned in the middle of the communication channel 
of the edge devices and the back-end systems to 
perform eavesdropping and sniffing of the exchanged 
network packets. The attacker can take advantage of 
weak cryptographic primitives or the absence of identity 
authentication processes in the communication 
processes. 

Impact: Passive network attacks can be the first stage 
of more sophisticated attacks. Thus, the acquisition of 
critical information exchanged between edge devices 
and back-end systems can be useful for the attacker to 
compromise more safety critical applications. 

Protection Goal: Establishment of secure and 
authenticated communication between edge devices 
and the back-end systems in order to avoid attackers to 
be positioned in the middle of the communicating 
entities.  

High 

Secure 
communication 
channel 
establishment 
based on the use 
of HW-based 
keys managed by 
the ASSURED 
TPM-enabled 
wallet   

Active 
Network 
Attacks 

Scenario: In the context of this active network attacks 
the adversary can launch several attack variations with 
high impact. More specifically, an attacker can take 
advantage of compromised keys and decrypt the 
communication between the edge devices and the back-
end systems. In addition, network attacks can be 
launched against the TPM installed on a device by 
exploiting the TPM Command Transmission Interface 
(TCTI) and, thus, interfering with, or disrupting, the 
communication between the host device and the TPM.    

Impact: Active network attacks can lead to manipulation 
or disruption of the communication between core edge 
devices and the back end-systems or between the host 
devices and the TPM that acts as the trust anchor of the 
overall deployment. Thus, active attacks can have great 
impact on the confidentiality of the communications and 
can threaten the safety critical services that capitalise on 
the trust qualities of the TPM. 

Protection Goal: Guarantee the secrecy of the 
cryptographic keys used to establish secure and 

High 

In case of Key 
Compromise: 
Strong 
revocation of the 
cryptographic 
keys and 
credentials 
guaranteed by 
the ASSURED 
TPM-enabled 
wallet.  
 
In case of 
compromised 
host device: Use 
of policies- and 
sessions-related 
core TPM 
services to 
safeguard the 
communication 
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authenticated communications based on TPM 
authorisation mechanisms. Ensure authorised and 
regulated interaction of safety critical processes with the 
TPM based on the principle of minimising the trusted 
computing base and adopting minimal trust 
assumptions. 

between the host 
and the TPM. 

Impersonation 
in data 
management  

Scenario: In the context of impersonation in the data 
management process an attacker manipulates memory-
related vulnerabilities, at the edge devices, for being able 
to get access to the host TPM-based Blockchain wallet 
to perform unauthorized reads on the recorded data. In 
addition, an attacker may exploit any stored credentials 
from legitimate External Stakeholders to get privileged 
access to the Data Storage. 

Impact: Such attacks can have great impact on the 
confidentiality of information stored and managed 
throughout the data value chains formed in the context 
of ASSURED. The malicious activity of the attacker can 
lead to data leaks of sensitive and operational data from 
the underlined infrastructures. 

Protection Goal: Guarantee operational assurance the 
TPM-based Blockchain wallet and ensure that 
unauthorised read of recorded data can detected though 
the use of control flow attestation.  

High 

Runtime 
Attestation for 
verifying control 
flow integrity of 
the TPM-based 
wallet 
processes. 

5.2.2 Model of Use-cases Properties 

In the previous section, we documented the attack scenarios which are relevant to the public 
safety use case by giving details on their impact, and the conditions that need to be met for 
these attacks to be performed in this use case. Using this as a baseline, this section offers a 
mapping among the identified attack scenarios with the systems and processes of the 
demonstrator by highlighting the properties that need to be validated by the ASSURED 
defensive mechanisms to meet the protection goals. 

The public safety use case processes that should be protected are focused on the generation 
and sharing of privacy sensitive and safety critical data through the ASSURED supply chain. 
In this context, a core offering of the ASSURED framework is the attestation and verification 
of validation properties that has been defined in Section 4.1. Thus, the table below documents 
the properties to be validated against the most devastating identified attacks. 

TABLE 5: MAPPING OF VALIDATION PROPERTIES FOR PUBLIC SAFETY USE CASE 

Attack 
Scenario 

Target 
Systems 

Processes 
ASSURED 
Security 
Enabler 

Validation 
Property 

Key 
Extraction 
(Runtime) 

Edge 
devices 
(e.g., 
cameras, 
smoke 
detection 
sensors) 
and PLCs 

• Key establishment Static Properties 

Static and 
dynamically loaded 
binaries responsible 
for the establishment 
of the secure 
communication. For 
instance, the binary 
for generating the 
necassary 
algorithmic material 
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and prameters for the 
generation of ECC-
based keys in the 
context of Direct 
Anonymous 
Attestation leveraged 
for privacy protection. 
(See D4.3 [99])  

Code Injection 
(Runtime) 

Edge 
devices, 
Network 
components 
(e.g., IoT 
Gateway), 
back-end 
systems 

• Video data stream 
generation 

• Sensor data 
generation 

• Key establishment  

• Remote asset 
management 

• Face 
detection/recognition 

• Object detection 

• Face Recognition 
and Face Detection 

• Object detection 

• Fire detection and 
Smoke/Gas 
detection 

Static and Dynamic 
Properties 

Attestation of 
statically and 
dynamically loaded 
binaries used to 
interact with core OS 
functionalities. 

Control flow 
information of all 
processes generating 
the services’ data. 

Control-flow 

Edge 
devices, 
Network 
components 
(e.g., IoT 
Gateway), 
back-end 
systems 

• Video data stream 
generation 

• Sensor data 
generation 

• Key establishment 

• Remote asset 
management 

• Face 
detection/recognition 

• Object detection 

• Fire detection and 
Smoke/Gas 
detection 

Dynamic Properties 

Control flow 
information of all 
processes generating 
the safety critical 
services’ data. 

Malicious 
Updates 

Edge 
devices 

• Video data stream 
generation 

• Sensory data 
generation 

• Key establishment 

 

Static Properties 

Attestation of 
statically and 
dynamically loaded 
binaries  being 
updated in the 
context of the safety 
critical services. 

 

Unauthorised 
Access 

Edge 
devices 

• Video data stream 
generation 

• Sensory data 
generation 

Static properties 

Attestation of 
statically and 
dynamically loaded 
binaries in the 
context of sofware 
upades that indicate 
the configuration 
paramaters of the 
data generation 
processes.  
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Passive 
Network 
Attacks 

Edge 
devices, 
Network 
components 
(e.g., IoT 
Gateway), 
back-end 
systems 

• Key establishment 

• Remote asset 
management 

Static properties 

Attestation of 
statically and 
dynamically loaded 
binaries and the 
respecitve 
configuration of the 
responsible banaries 
for establishing the 
secure 
communication 
between edge 
devices and back-
end systems. 

Active 
Network 
Attacks 

Edge 
devices, 
Network 
components 
(e.g., IoT 
Gateway), 
back-end 
systems 

• Key establishment 

• Remote asset 
management 

Static and Dynamic 
properties 

Attestation of 
statically and 
dynamically loaded 
binaries that 
undertake credentials 
revocation process. 

Control flow 
information of the 
critical processes 
communicating with 
the TPM of a host 
device to detect 
control flow 
deviations. 

Impersonation 
in data 
management 

Edge 
devices 

• Remote asset 
management 

Static and Dynamic 
properties 

Statically and 
dynamically loaded 
binaries of the TPM-
based wallet. 

Control flow 
information of the 
TPM-based wallet 
service. 

5.3 SECURE AND SAFE AIRCRAFT UPGRADABILITY & 
MAINTENANCE 

The smart aerospace is a complex SoS-enabled ecosystem which consists of many onboard 
cyber-physical systems, such as Flight Management Systems (FMS), Environment Control 
Systems (ECS), Cockpit Flight Instruments (CFI), and on-board Wi-Fi systems. A secure 
server router (SSR) is a real-time embedded device that enables the most important aircraft 
functionalities, e.g., on- and off-board communications. SSR collects critical data of the aircraft 
while in the air from the on-board edge devices and transmits the data collected to a Ground 
Station Server (GSS) when on the ground. To ensure the security of a smart aerospace, it is 
crucial to deploy a safe and secure data transfer between the SSR and the ground station 
server and perform secure remote updates on the SSR. 

Figure 16 depicts the core components and services in smart aerospace use case. Currently 
the SSR communicates with the GSS through a cabled connection, specifically Ethernet 
connection, when the airplane is on the ground. SSR collects the sensor data while flying, and 
then transfers the data to the GSS through the cabled connection. Furthermore, as previously 
mentioned, the SSR offers several services on the airplane: separate Wi-Fi connections to the 
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crew members and to the passengers enabled by cellular connections, cabled data collection 
and storage from the sensors and an ad-hoc access control module to be used when 
performing physical software updates. SSR runs over a proprietary implementation of Security-
Enhanced Linux-based Operating System (OS). The GSS instead can be depicted as a simple 
data server, based on either a Linux or Windows OS, which stores the data received from the 
SSR. 

 

FIGURE 16 SMART AEROSPACE CORE COMPONENTS AND SERVICES 

5.3.1 Protection Goals and Attack Settings 

In aviation and aerospace industry, the trustworthiness on safety-critical components has high 
priority, otherwise countless lives could be lost. This is also the protection goal to achieve in 
context of smart aerospace, namely one can confidently say that all the activities performed 
by the system are justifiably and confidently trusted. The definition of trustworthiness on safety-
critical components needs to include not only safety but also security. Therefore, ASSURED 
is needed to comply with the up-to-date security protection mechanisms of the aerospace 
systems. 

The SSR is primarily used as an Electronic Flight Bag (EFB) interface and communication 
unit to enable pilots and crew to communicate over wireless interfaces. When deployed on the 
aircraft, the SSR wirelessly connects any EFB device, such as a pilot mobile device, to 
exchange data with other flight deck devices. The information exchanged varies widely by 
aircraft, airline, and EFB application, but EFB information may include pre-flight checklists, 
weather data, aeronautical charts, as well flight operation quality assurance data. 
Consequently, security of the router and data integrity is paramount. A successful compromise 
of the SSR software could potentially drive pilot confusion by providing inaccurate aeronautical 
data to the pilot.  Moreover, given the SSR’s ability to exchange flight operation quality 
assurance data, a compromise of the SSR would allow the attacker to potentially corrupt 
maintenance logs. While several advanced protection techniques are put in place around the 
SSR, the ASSURED framework aims to extend these conventional security measures with 
advanced runtime protection for additional assurance.  
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The smart aerospace ecosystem can be vulnerable to different attack scenarios, shown in the 
attack tree in Figure 17. While the attack tree graph provides a complete view of the potential 
attack scenarios in the smart aerospace use case, the most crucial components of the 
ecosystem are the SSR, the GSS and the communication channel between them. This is due 
to the physical restrictions and composition of the ecosystem. For example, if we evaluate the 
network attacks centred on the SSR, the communication with the GSS is more vulnerable than 
the one with the sensors. On the one hand, the communication with GSS is performed through 
a wireless connection which does not require physical proximity for the attacker to either the 
SSR or the GSS, allowing him to perform physical-undetected wireless attacks on the 
connection. On the other hand, the communication with sensors requires the attacker to be 
physical connected to either the SSR or the sensors since these communications are fully 
cabled and not easily accessible to non-technical personnel. 

If we consider the communication established between the SSR and GSS when performing 
either the secure data transfer or the secure remote software update, the SSR and GSS must 
first establish a wireless communication, attest each other’s authenticity, and control the GSS 
authorization to ensure the confidentiality of the data transferred. If a software update is pushed 
to the SSR, starting from the same communication security requirements mentioned for the 
data transfer scenario, the GSS authorization must be verified and the integrity of the software 
must be checked, through static attestation at first and through dynamic attestation during run-
time. 

Starting from this nominal baseline, we identify several critical attacks that may severely affect 
the smart aerospace ecosystem, including malicious updates, unauthorized access, and 
passive network attacks. 

Malicious update attacks target the SSR and may affect a wide variety of services that 
require updates or patches frequently. The attacker can use various approaches to 
masquerade malicious code as legitimate software updates, either firmware updates or 
updates of third-party software. This would open vulnerabilities on the SSR, allowing the 
attacker to gain control over the device, which would lead in having the whole ecosystem open 
to the attacker. Unauthorized access attacks aim at monitoring, accessing, and manipulating 
the proprietary data of the distributed software updates. This could lead to incorrect analysis 
of the data representing the status of the aircraft, followed by future incorrect mitigations which 
would be forced due to the data being compromised by the attacker when the sensors’ data 
are transferred from the SSR. Finally, passive network attacks target the data exchanged 
between the SSR and the GSS. The attacker does not actively tamper the data, but just read 
and analyse the data in order to gain proprietary information on the overall system, on both 
software and hardware sides. 

Besides the aforementioned critical attacks, there are other type of attacks that make less 
impact or are hard to be carried out. we will shortly introduce other potential attacks for purpose 
of completeness. Software attacks targeting SSR include code injection attacks and control 
flow manipulation attacks that inject malicious code or reuse existing code to perform 
malicious actions or compromise SSR’s data. As a prerequisite, the attacker is able to send 
the exploit payload to the victim’s applications along with the input data. One group of software 
attacks, referred to as key extraction, exploits memory vulnerabilities to extract secret keys 
from the devices may affect the SSR and GSS. In addition, active network attacks target the 
communication channel between the SSR and GSS. The attacker can launch DoS attacks, 
spread malware to the network devices, break the communication with compromised keys, 
and interrupt the network communication between TPMs. Finally, in the context of the smart 
aerospace use case, physical attacks require physical proximity for the attacker to the SSR, 
which renders this type of attacks unrealistic, such as side channel attacks, memory 
interposing, and high glitch attacks. 
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FIGURE 17 SMART AEROSPACE ATTACK TREE 
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A summary of highly critical attacks for the smart aerospace use case is presented in Table 6. 

TABLE 6: SMART AEROSPACE CRITICAL ATTACK SCENARIOS 

Attack 
Scenario 

Description Criticality Counter-measure 

Malicious 
updates 

Scenario: This attack targets the SSR and 
services running on it. An attacker replaces 
legitimate software updates with malicious 
code. 

Impact: Software integrity compromised, 
and system open to vulnerabilities. 

Protection Goal: Only legitimate software 
updates from known sources can be 
installed in the SSR. 

High 

Static attestation for verifying 
binary signature 

Authentic and confidential 
network communication 

Unauthorized 
access 

Scenario: This attack targets to the 
software update processes of SSR 
firmware and applications. The attacker is 
able to interfere with the update processes 
and access to the proprietary data of the 
distributed updates. 

Impact: Manipulation of proprietary data 
enables the attacker to compromise the 
operational behaviour of safety-critical 
applications and modify the mode of 
operations of SSR. 

Protection Goal: Confidentiality and 
integrity of software update processes. 

High 
Static attestation and runtime 
attestation for verifying the 
update processes. 

Passive 
network 
attacks 

Scenario: An attacker eavesdrops and 
sniffs the network packets exchanged 
between SSR and GSS. The attacker can 
take advantage of weak cryptographic 
primitives or the absence of identify 
authentication processes. 

Impact: Data confidentiality compromised. 
Passive network attacks can be the first 
stage of many other sophisticated attacks. 

Protection Goal: Retain the confidentiality 
of network data shared between SSR and 
GSS. 

High 

Secure communication channel 
established based on the use of 
HW-based key managed by 
ASSURED TPM-enabled wallet 

Control flow 

Scenario: An attacker injects malicious 
code to the device altering the software 
flow of commands expected to be 
executed. Data compromising the control 
flow execution could be instructions 
indicating faults or operational modes of 
the devices where no protection is present.  

Impact: Device inner-data captured and 
compromised. If additional commands can 
be injected to the device than more severe 

High 

Runtime Attestation for 
verifying control flow integrity of 
safety critical services on the 
edge devices. 
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attacks can occur (unauthorised privilege 
editing)  

Protection Goal: Code injection on the 
device and violation of its control flow 
integrity should be detected.   

Code 
injection 

Scenario: An attacker injects malicious 
code at runtime or through infiltrating to 
firmware updates of the device 
 
Impact: target data integrity or manipulate 
the ID of the device.  
 

Protection Goal: Compromising the  
device should not allow an attacker to 
obtain access to core code and manipulate 
its ID or other core services 

High 

Runtime Attestation for 
verifying control flow integrity of 
safety critical services on the 
edge devices. 

5.3.2 Model of Use-cases Properties 

In this section, we make the mapping among the identified attack scenarios with the 
demonstrator processes by highlighting the properties needed to be validated by the 
ASSURED defensive mechanisms to meet the protection goals, as shown in Table 7. 

TABLE 7: MAPPING OF VALIDATION PROPERTIES FOR SMART AEROSPACE USE CASE 

Attack 
Scenario 

Target 
Systems 

Processes 
ASSURED 
Security 
Enabler 

Validation 
Property 

Code injection SSR 

OS and all related 
services. All active 
services should be 
attested before their 
execution. 

Static and dynamic 
properties 

Binary attestation of the 
new software (device 
firmware) to be enforced 
into the device. 

Code and static data 
measurements on run-
time. 

Control-flow and data-
flow attestation.  

Control-flow SSR 

OS and all related 
services. All active 
services should be 
attested before their 
execution. 

Static and dynamic 
properties 

Loaded libraries and 
code attestation. 

Code and static data 
measurements on run-
time. 

Control-flow and data-
flow attestation. 

Malicious 
updates  

SSR 
OS and all active 
services on SSR 

Static properties 

Attestation of loaded 
binaries and 
configuration related to 
software update 
processes 
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Unauthorized 
access 

SSR 
OS and all active 
services on SSR 

Static and 
dynamic 
properties 

Attestation of loaded 
binaries and 
configuration related to 
software update 
processes 

Control flow information 
of the update processes 

Passive network 
attacks 

SSR, GSS 

All services responsible 
for establishing secure 
communication between 
SSR and GSS. 

Static properties 

Configuration integrity 
attestation. 

Attestation of loaded 
binaries responsible for 
establishing secure 
communication between 
SSR and GSS. 

 

5.4 DIGITAL SECURITY OF SMART SATELLITES 

The digital security of smart satellites use case ecosystem consists of the following Cyber 
Physical System of Systems, as shown in Figure 18. 

1) Cubesat is a miniaturized satellite performing specific missions in space. There is 
cooperation among multiple Cubesats as well.   

2) The Ground Station (GS) is the central unit, which monitors, maintains, and controls 
CubeSat operation.  

CubeSats use KUBOS, an operating system specifically designed for CubeSat, which contains 
several specific services supporting necessary functions of the CubeSat. CubeSats also run 
custom software implementing the mission application and the integration with specific 
hardware payloads, such as cameras and sensors. Usually, CubeSats use hardware payloads 
to collect data such as telemetry data, and afterwards report the data to the Ground Station. 
Then, the mission software applications need to be updated regularly.  

The Ground Station however runs a commodity OS (Linux or Windows) which is configured by 
an Admin and is operated by a CubeSat Operator. The Ground Station consists of the Gateway 
Service implementing the communication with CubeSats, third-party applications, backend 
systems (e.g., the ASSURED backend server) and other external parties (e.g. external 
stakeholders). The application layer of the ground station consists of specific services 
responsible for the control, monitoring, maintenance, and update of the Cubesats, such as 
audit service logging necessary information, and other services supporting the visualisation, 
sharing and notifications mechanisms of the system. More details can be found in Figure 18. 

CubeSats communicate with the Ground Station and other CubeSats via secure channels. The 
data collected by CubeSats is transmitted to ground station periodically or upon request. Apart 
from the internal communication between CubeSats and the Ground Station, the data in some 
cases need to be shared (from the Ground Station) with external stakeholders. 
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FIGURE 18 SMART SATTELITE COMMUNICATION SERVICES 

5.4.1 Protection Goals and Attack Settings 

Potential attacks targeting the smart satellites use case are depicted in Figure 19. The 
adversary's goal is to control a specific or a sub-group of CubeSats services in order to disrupt 
the normal execution of a mission application, or to cause data leakage or corruption of the 
data collected from the CubeSats. Given the launch process followed and the verification 
checks performed, as well as the operational environment of CubeSat, which limits physical 
access, the CubeSat can be assumed to be benign when firstly operating in space, and 
physical attacks are precluded. But the adversary can still compromise CubeSats through 
software update attacks. Specifically, the attacker uses deceptive methods such as phishing 
to fool the admin or CubeSat operator to install malicious updates, either CubeSat firmware 
or third-party software.  

The Ground Station is a potential attack target as well. There are communication channels 
between the Ground Station and CubeSat, as well as among CubeSats. Attackers may 
leverage it to compromise more CubeSats after compromising the ground station first. The 
ground station, running on a common Windows/Linux OS, cannot be easily formally verified 
and is likely to contain exploitable vulnerabilities. An attacker can exploit a known or zero-day 
vulnerability to inject code into Ground Station in order to stealthily access the confidential 
data stored in Ground Station, or perform unauthorized actions such as delete anomalous logs, 
or send forged commands to CubeSats. Advanced adversaries can perform runtime attacks 
to manipulate the legitimate execution behaviours of critical services running in ground station, 
such as services communicating with CubeSats. This kind of attacks can bypass some security 
enforcement techniques like DEP. In addition, a special type of software attacks is key 
extraction that targets secret key materials stored or processed in ground station, such as 
TLS keys used to secure communication with CubeSats.  

The aforementioned attacks belong to the category of software attacks that target software 
components with vulnerabilities. The adversary can leverage software attacks to gain access 
to the victim system, perform unauthorized operations such as modify the system configuration 
and access to sensitive data. On this basis, the attacker can use network attacks to 
compromise more edge devices. However, the network communications within the smart 
satellite use case are conducted through well-configured and secure channels, such as TLS, 
to ensure the data integrity, confidentiality, and authentication. DoS attacks are considered out  



D1.3: Operational SoS Process Models & Specification of Properties 

© 2020-2023 ASSURED Consortium Page 73 of 87 

 

 FIGURE 19: ATTACK TREE GRAPH FOR SMART SATELLITES USE CASE 
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of the scope of ASSURED. Thus, the criticality of network attacks is evaluated as low. Network 
attacks can be categorized into passive attacks like eavesdropping, and active attacks. The 
latter category includes spreading malwares to the network devices, evading secure 
communication by compromising cryptographic keys, and network attacks on the TPM.  

In the context of the smart satellite use case, another potential attack target is the data 
processed and stored in the Ground Station. Attackers can reveal sensitive data, damage the 
integrity of data sent to other stakeholders, or disrupt the operation of ground station, e.g., 
generate false alarms about the system's security state. There are several available paths for 
attackers to achieve this goal. Besides the software attacks mentioned above, it is possible to 
perform physical attacks against the Ground Station. For instance, the attacker can perform 
side channel attacks to extract confidential data, or hardware glitch attacks to interfere with 
ground station by glitching the voltage. Alternatively, memory interposing attacks can snoop 
into or modify the memory by installing an interposer in ground station’s DRAM. However, 
based on the practical operational environment of the Ground Station, those physical attacks 
are not taken into consideration, since physical security protection like access control and 
surveillance is a much more effective and easy-to-deploy solution.  

At the Table 8 below all attack scenarios evaluated of high impact are enlisted along with the 
respective countermeasures. 

 

TABLE 8: SMART SATELLITES CRITICAL ATTACK SCENARIOS 

Attack 
Scenario 

Description Criticality 
Counter-
measure 

Key 
extraction 

Scenario: This attack targets the ground station that 
run specific applications performing cryptographic 
operations with keys, such as software services 
communicating with CubeSat and external entities. The 
attacker acquires timely memory extraction to exfiltrate 
the cryptographic key material exposed during runtime 
of those applications. 

Impact: Compromise backward and forward data 
confidentiality of exchanged data. 
 
Protection Goal: cryptographic key material can only 
be accessed by authorized partners and only in 
predefined ways. 

High 

Runtime attestation 
for verifying the 
integrity of key 
access operations 

Code Injection  

Scenario: The attacker exploits software vulnerabilities 
and injects malicious code on the ground station. By 
means of compromised ground station, the attacker can 
further inject malicious code on the CubeSats. 

Impact: Perform unexpected operations on ground 
station and CubeSats. Compromise the data integrity 
and confidentiality of ground station and CubeSats 

Protection Goal: Unauthorized code should not be 
executed. 

High 

Static attestation and 
runtime attestation 
before executing a 
specific operation. 

Runtime 
attack 

Scenario: This attack targets ground station services. An 
attacker exploits memory corruption vulnerabilities on 
ground station's services to change the legitimate control 

High 
Runtime attestation 
for verifying control 
flow integrity before 
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flow of those services, in order to perform unauthorized 
operations and obtain unauthorized access to the 
memory, and extract information such as the TLS key. 
This attack helps the adversary to bypass common 
security enforcement, such as DEP. By compromising 
the Ground Station, the attacker can further attack 
CubeSats. 

Impact: Divert the operational behaviour of edge 
devices, compromise data confidentiality and integrity. 

Protection Goal: Abnormal control flow behaviour 
should be detected, and new protection policies should 
be deployed. 

executing a specific 
operation. 

Malicious 
updates 

Scenario: This attack targets the ground station and 
CubeSats. An attacker can fool the admin and operator 
or force an automated process to install malicious 
updates on ground station or CubeSats. 

Impact: Compromise commands that are send to 
CubeSats. 

Protection Goal: Only legitimate software updates from 
known sources can be installed in ground station and 
CubeSats. 

High 

Static attestation for 
verifying binary 
signature before 
distributing updated 
version of the 
mission application. 

5.4.2 Model of Use-cases Properties 

In the previous section we specify the most critical attack scenarios for smart satellites use 
case and the relevant protection goals. This section will elaborate on how ASSURED meets 
each objective by attesting and verifying specific properties. Table 9 presents the mapping 
between the identified attacks and the corresponding validation properties. 

TABLE 9: MAPPING OF VALIDATION PROPERTIES FOR SMART SATELLITES USE CASE 

Attack 
Scenario 

Target 
Systems 

Processes 
ASSURED 
Security 
Enabler 

Validation 
Property 

Key extraction Ground Station 
(GS). 

Ground Station 
software services 
communicating with 
CubeSats and 
external entities 
(during key 
establishment).  

Dynamic properties 

Control flow information 
of related processes 
before proceeding with 
key establishment. 

Code Injection 
(Runtime) 

Ground Station 
(GS). CubeSat 

Ground Station 
software services. 
All services 
included in a 
specific operation 
should be attested 
before proceeding 
with operation. For 
example, the S/W 
distribution service (at 
the GS side) and File 
Transfer Service (at 

Static Properties 
and dynamic 
properties 

Attestation of loaded 
binaries. 

Control flow information 
of all processes. 

Configuration files of the 
services. 
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CubeSat side) should 
be attested before 
proceeding with the 
distribution of new 
version of mission 
software application. 
Also core services of 
CubeSats OS should 
be attested (KUBOS).  

Changes to static code 
of the services 

Changes to data flow 
exchange with other 
services. 

Runtime Attack 
Ground Station 
(GS), CubeSat 

Ground Station 
software services. 
All services 
included in a 
specific operation 
should be attested 
before proceeding 
with operation. For 
example, the S/W 
distribution service (at 
the GS side) and File 
Transfer Service (at 
CubeSat side) should 
be attested before 
proceeding with the 
distribution of new 
version of mission 
software application. 
Also core services of 
CubeSats OS should 
be attested (KUBOS). 

Dynamic Properties 

Control flow information 
of all processes. 

Configuration files of the 
services. 

Changes to static code 
of the services 

Changes to data flow 
exchange with other 
services. 

Malicious 
update 

Ground Station 
(GS), CubeSat 

All Ground Station 
and CubeSats 
software  

Static Properties 

Attestation of the 
integrity of software 
updates. 

Configuration files of the 
services. 

Libraries / Dependency 
changes in the services 
during updates 
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6 CONCLUSION 

This final section will act as a synopsis of the deliverable and summarize its findings. The 
scope of this deliverable was to set the scene for the design of the novel remote attestation 
schemes [3] (e.g., Configuration Integrity Verification, Control-flow Attestation, Swarm 
Attestation and Jury-based Attestation) towards the creation of trust- and privacy-aware 
service graph chains. In this context, one important parameter to define is the type of 
properties, of all the hardware and software assets of the SoS-enabled ecosystem, that 
need to be attested for achieving the desired level of trustworthiness. Recall that one of 
the key contributions of ASSURED is the definition of a framework that will allow the use of 
property-based attestation to corroborate the fundamental security (and non-security) 
properties of single assets and extend this to a larger SoS. Essentially, the endmost goal is to 
provide the means to reason on the overall security capabilities of complex SoS based on 
properties attested on the level of single components in order to assess the security of an SoS-
enabled ecosystem both during design- and run-time and enforce security policies based on 
such assessments. 

Towards this direction, this deliverable provided a detailed break-down of all static and run-
time system properties that, when considered for attestation, can provide verifiable evidence 
on the level of assurance of a system. These include resources ranging from concrete 
configuration properties to low-level behavioural execution properties covering all 
phases of a device’s execution; from the trusted boot and integrity measurement of a CPS 
(e.g., list of allowed binaries loaded, type of hardware present, type of firmware present, etc.) 
to run-time execution (e.g., control-flow information, data-flow information, etc.) of only those 
safety-critical functions that have strong integrity and operational correctness requirements. 
This enables the vision of ASSURED towards employing advanced attestation schemes, for 
verifying the integrity (during both design- and run-time) of the target system, but not of the 
entire (untrusted) code base – which is rather impractical – but only of those properties that 
have the higher footprint on the overall SoS operation and level of assurance.  

This compartmentalization also led to the identification of the behavioural properties to be 
attested and the modelling of the critical software components in the context of all of 
the envisioned use cases which will, in turn, dictate the resources that need to be considered 
for attestation when calculating the optimal set of attestation policies to be enforced [2]. This 
was also based on the instantiation of an artefact-centric modelling notation for 
representing all the technical operations, within a SoS-enabled ecosystem, in such a way so 
that we can extract the acceptable state of all safety-critical operations. Essentially, this is 
the model that can be leveraged by a System Administrator that wishes to identify all 
relationships between the core assets in the target SoS so that she can then capture the 
control-flow among the activities and processes running within a system and in a 
hierarchical composition of systems. This provides the trusted reference values of what 
is expected as a normal behaviour and against which real-time monitored states will be verified. 

Overall, through this codification of trust among computing entities (that potentially are 
composed of possibly insecure – heterogeneous – hardware and software components), this 
deliverable puts forth a direct mapping of the system properties that need to be attested for 
protecting against specific type of vulnerabilities. This information will be further processed in 
the context of D2.1 [63] where a detailed threat analysis will be conveyed, in order to identify 
both the attestation tasks and the resources to be attested as a detection measure against the 
most prominent and impactful vulnerabilities. This, in turn, will be one of the input pipelines to 
the Policy Recommendation Engine [2] in order to calculate the optimal scheduling of 
attestation tasks that need to be enforced to all hardware assets towards achieving the desired 
level of trustworthiness – not only for single systems as standalone components but also for 
the entire composition of systems capturing all the internal relationships and trust calculations. 
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ABBREVIATIONS 

Abbreviation Description 

ABAC Attribute-based Access Control 

ABE Attribute Based Encryption 

AK Attestation Key 

API Application Programming Interface 

ARP Address Resolution Protocol 

ASLR Address Space layout Randomization 

BFT Byzantine Fault Tolerance 

BGP Byzantine Generals Problem 

BPMN Business Process Modelling Notation 

CA Certification Authority 

CFA Control-flow Attestation 

CFG Control-flow Graph 

CFI Control-flow Integrity 

CIV Configuration Integrity Verification 

CMMN Case Management Modelling Notation 

CP-ABE Ciphertext Policy Attribute Based Encryption 

CPS Cyber-Physical System 

CRED AK Credential 

DAA Direct Anonymous Attestation 

DApps  Distributed Applications 
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DEP Data Execution Prevention 

DID Decentralized identifier Identification 

DLT Distributed Ledger Technology 

DoA Description of Action 

DPA Differential Power Analysis 

DPos Delegated Proof of Stake 

Dx.x Deliverable x.xl 

ECC Elliptic-Curve Cryptography 

ECDSA Elliptic Curve Digital Signature Algorithm 

EK Endorsement Key 

FMS Flight Management System 

HLF Hyperledger Fabric 

ICS Industrial Control System 

IoT Internet of Things 

JIT-ROP Just-in-Time Oriented Programming 

JOP Jump-Oriented Programming 

KDF Key Derivation Function 

KEP Key Exposure Problem 

KEW Key Exposure Window 

KP-ABE Key Policy Attribute Based Encryption 

MITM Man-in-the-Middle 

MSP Membership Service Provider 
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NO Network Orchestrator 

PBFT Practical Byzantine Fault Tolerance 

PCR Platform Configuration Register 

PLC Programmable Logic Controller 

PK Public Key 

RA Remote Attestation 

ROP Return-Oriented Programming 

SCB Security Context Broker 

SE Searchable Encryption 

SGX Software Guard Extensions 

SK Secret Key 

SoS Systems of Systems 

TCB Trusted Computing Base 

TEE Trusted Execution Environment 

TOCTOU Time-of-Check-Time-of-Use 

TPM Trusted Platform Module 

WPx Work Package X 
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