
D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 1 of 87

Grant Agreement No.: 952697
Call: H2020-SU-ICT-2018-2020
Topic: SU-ICT-02-2020
Type of action: RIA

D1.3 OPERATIONAL SOS PROCESS MODELS
& SPECIFICATION OF PROPERTIES

Revision: v.1.0

Work package WP 1

Task Task 1.3

Due date 31/08/2021

Deliverable lead TUDA

Version 1.0

Authors Jingru Wang (TUDA), Ferdinand Brasser (TUDA), Richard Mitev (TUDA)

Reviewers Thanassis Giannetsos, Dimitris Papamartzivanos (UBITECH)

Ioannis Avramidis (INTRASOFT)

Abstract Deliverable D1.3 focuses on the definition of the system properties, per use case,
that need to be considered for (run-time) attestation so as to produce the necessary
security claims towards achieving the required level of assurance and
trustworthiness. Such validation properties can actually capture the entire application
stack of a device (from configuration properties to execution behavioural properties)
depending on the types of attacks considered, the safety-critical nature of the
services and any timing constraints. Towards this direction, ASSURED adopts both
activity- and artefact-centric modelling approaches that enables the modelling of all
software and hardware assets and their detailed system description so as to extract
all necessary validation properties that set the scene for the evaluation of the novel
set of attestation enablers to be designed in the context of WP3.

Keywords Information & Process Modelling, Remote Attestation & Verification, Threat
Modelling, System Validation Properties, Trust Modelling

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 2 of 87

Document Revision History

Version Date Description of change List of contributors

V0.1 01.05.2021 ToC was created and circulated where the
focus was on Section 3.3 and Chapter 4 for
starting the discussions with the use case
partners on the considered threat model and
the list of all possible validation properties

Jingru Wang (TUDA)

V0.2 19.05.2021 State-of-the-art Analysis on the type of
modelling approaches that can be considered
in ASSURED

Dimitris Papamartzivanos, Dimitris
Karras, Sofianna Menesidou (UBITECH),
Edlira Dushku (DTU), Ioannis Avramidis
(INTRA), Ilias Aliferis (UNISYSTEMS)

V0.3 04.06.2021 First draft of the definition of all possible
validation properties that can be considered in
the context of remote attestation (Chapter 4)

Jingru Wang, Ferdinand Brasser (TUDA),
Thanassis Giannetsos, Dimitris
Papamartzivanos (UBITECH), Edlira
Dushku (DTU), Liqun Chen (SURREY)

V0.4 25.06.2021 Definition of the threat model that can be
considered in the context of an IoT-based
“Systems-of-Systems” focusing on both host-
based and network-based attacks (Section 3.3)

Jingru Wang, Ferdinand Brasser (TUDA),
Thanassis Giannetsos, Dimitris
Papamartzivanos (UBITECH), Edlira
Dushku (DTU), Liqun Chen, Nada El
Kassem (SURREY), Kaitai Liang (TUDE),
Thanassis Giannetsos (UBITECH),
Riccardo Orizio (UTRCI)

V0.5 09.07.2021 First draft of the mapping of the threat modelling
in the context of the use cases (Chapter 5)

Liqun Chen, Nada El Kassem (SURREY),
Jingru Wang (TUDA), Kaitai Liang
(TUDE), Ilias Aliferis (UNISYSTEMS),
Karthik Shenoy, Shantanoo Desai (BIBA),
Stelios Basagiannis, Riccardo Orizio
(UTRCI), Nikos Drosos (SPH), Dimitra
Tsakanika, Ilia Christantoni (DAEM)

V0.6 23.07.2021 Update and finalization of the defined threat
model highlighting also the threat taxonomy
provided by OWASP (Section 3.3)

Finalization of the attack trees per use case

(Chapter 5)

Jingru Wang, Ferdinand Brasser (TUDA),
Thanassis Giannetsos, Dimitris
Papamartzivanos (UBITECH), Edlira
Dushku (DTU), Liqun Chen, Nada El
Kassem (SURREY), Kaitai Liang (TUDE),
Thanassis Giannetsos (UBITECH),
Karthik Shenoy, Shantanoo Desai (BIBA),
Stelios Basagiannis, Riccardo Orizio
(UTRCI), Nikos Drosos (SPH), Dimitra
Tsakanika, Ilia Christantoni (DAEM)

V0.7 18.08.2021 Identification of the type of software and
hardware assets to be considered per use case
and mapping of the specific validation
properties that can protect against all identified
threats (Chapter 5)

Jingru Wang, Ferdinand Brasser (TUDA),
Edlira Dushku (DTU), Kaitai Liang
(TUDE,) Karthik Shenoy, Shantanoo
Desai (BIBA), Stelios Basagiannis,
Riccardo Orizio (UTRCI), Nikos Drosos
(SPH), Dimitra Tsakanika, Ilia
Christantoni (DAEM)

V0.8 27.08.2021 Final description of the trust assessment and
modelling approach followed in the context of
ASSURED (Chapter 2)

Dimitris Papamartzivanos, Dimitris
Karras, Sofianna Menesidou (UBITECH),
Edlira Dushku (DTU), Ioannis Avramidis
(INTRA), Ilias Aliferis (UNISYSTEMS),
Edlira Dushku (DTU)

V0.9 28.09.2021 Review the document Thanassis Giannetsos, Dimitris
Papamartzivanos (UBITECH), Ioannis
Avramidis (INTRASOFT)

V0 22.02.2022 Polishing of the language of the deliverable and
update of the validation properties. Submission
of the deliverable.

Thanassis Giannetsos, Dimitris Karras
(UBITECH), Jean-Baptiste Milon
(MARTEL)

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 3 of 87

Editors

Jingru Wang (TUDA), Ferdinand Brasser (TUDA), Richard Mitev (TUDA), Philip Rieger (TUDA)

Contributors (ordered according to beneficiary numbers)

Edlira Dushku, Nicola Dragoni (DTU)

Jingru Wang, Ferdinand Brasser, Richard Mitev, Philip Rieger (TUDA)

Liqun Chen, Nada El Kassem (SURREY)

Dimitrs Papamartzivanos, Thanassis Giannetsos, Dimitris Karras, Sofianna Menesidou
(UBITECH)

Riccardo Orizio, Stelios Basayiannis (UTRCI)

Nikos Drossos (SPH)

Dimitra Tsakanika, Ilia Christantoni (DAEM)

Ilias Aliferis (UNIS)

Ioannis Avramidis (INTRA)

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
"Future Proofing of ICT Trust Chains: Sustainable Operational Assurance and Verification
Remote Guards for Systems-of-Systems Security and Privacy" (ASSURED) project’s
consortium under EC grant agreement 952697 and do not necessarily reflect the views of the
European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 4 of 87

COPYRIGHT NOTICE

© 2020 - 2023 ASSURED Consortium

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web ✓

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to ASSURED project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 5 of 87

EXECUTIVE SUMMARY

Deliverable D1.3 focuses on the definition of the system properties, per use case, that need to
be considered for (run-time) attestation so as to produce the necessary security claims
towards achieving the required level of assurance and trustworthiness. Such validation
properties can actually capture the entire application stack of a device (from configuration
properties to execution behavioural properties) depending on the types of attacks
considered, the safety-critical nature of the services and any timing constraints.

Recall that ASSURED core innovation is to be able to enhance the security posture of a
“Systems-of-Systems” environment – comprising multiple, heterogeneous embedded
devices – by assessing dynamic trust relationships and defining a trust model based on
which the necessary security claims can be produced for establishing trust through the
entire service-graph chain, for cooperatively executing safety-critical functions. In this
context, ASSURED builds upon and expands the Zero Trust concept to tackle the issue of
how to bootstrap vertical trust from the application, the execution environment and
device hardware from one single component and continuing as such systems get connected
to ever larger entities. This includes the design and employment of a new breed of attestation
enablers for measuring and determining the integrity and origin of the system and all its internal
(software) components. Trusted Execution Environments (TEEs), as sw- or hw-based security
elements, will be essential to establish a verifiable chain of trust throughout the entire
application stack of the host device, as well as protecting data in transit, at rest and in use.

However, trying to attest the entire codebase raises concerns on the efficiency, scalability
and robustness of these techniques that question whether they can be applied in the real-
world resource-constrained edge devices. Such limitations mainly stem from the fact that these
types of operational assurance methods try to verify the integrity, during run-time, of the entire
(untrusted) code base of commodity platforms and operating systems. Considering that
competitive IIoT application markets will always produce innovative and large systems
comprising diverse-origin software-based components, with uncertain security properties, the
best one can hope for is that a sub-set of such loaded software functions can be efficiently
protected (in near real-time) against sophisticated run-time exploitation attacks.

Therefore, it is of paramount importance to be able to identify only those core properties that
are safety-critical to the operation of a device that we can continuously attest without affecting
both the resources and behaviour of the target device. This refers to the low-level properties
that need to be attested for specific hardware, and can be enhanced by employing the
modular protection profiles defined within ASSURED as part of the service graph
representing the CPSoS, and can be used to achieve the required trustworthiness level of
the entire system.

To this end, D1.3 evaluates existing models, such as Business Process Modelling Notation
(BPMN) and Case Management Modelling Notation (CMMN), been proposed for all those
safety-critical components that need to coexist and be securely executed in a platform with
shared hardware and software resources (such as caches and central memory bus), and their
connection to the overall system behaviour. Based on this, it develops a more suitable model
for ASSURED that can represent the business and technical processes relying on Cyber-
Physical System (CPS) environments. A model tailored for Cyber-Physical Systems of
Systems (CPSoS) enables us to capture only those processes (such as algorithms, control,
and device operational logic elements) with the highest criticality level, that need to be
continuously verified in real-time. This will also act as the basis for the efficient, effective, and
scalable attestation enablers.

By coupling the Zero Trust security principle with the need of “Never Trust, Always Verify”
specific system properties, ASSURED bootstraps vertical trust for all users, devices and
systems in a “Systems-of-Systems” environment by enabling continuous authorization and
authentication prior to be granted access to data or resources. Through TPM-enabled security

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 6 of 87

claims, assurances and verifiable chain of trust, ASSURED reaches its full potential: not only
does it mitigates risks stemming from the Zero Trust SoS environment but also ensures
resilience.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 7 of 87

TABLE OF CONTENTS

Disclaimer ..3

Copyright notice ...4

1 INTRODUCTION .. 11

1.1 Dynamic Trust Assessment in SoS Environments .. 11

1.2 Scope and Purpose .. 13

1.3 Relation to Other WPs and Deliverables ... 14

1.4 Deliverable Structure .. 15

2 APPROACH AND MODEL ... 17

2.1 Modelling Cyber-Security Assurance and Trust in Complex SoS ... 18

2.2 In the Supply Chain we Trust ... 20

2.2.1 Smart City Domain ... 20

2.2.2 Smart Satellite Communication Domain .. 20

2.2.3 Smart Manufacturing and Smart Factory Domain ... 21

2.2.4 Secure and Safe Aircraft Upgradability and Maintenance Domain 22

2.3 Overview and Comparison of existing models ... 22

2.4 Selection Criteria for the ASSURED Model ... 24

2.5 ASSURED Model ... 24

2.5.1 ASSURED Use Cases Artefact-Centric Modelling .. 26

3 ASSURED EDGE DEVICES ABSTRACTION MODELLING 29

3.1 Setting The Scene and Relevant Definitions ... 29

3.2 System Specifications and Assumptions ... 32

3.2.1 Functional Properties of Systems and Components .. 34

3.3 Adversarial Model and Assumptions .. 37

3.3.1 Software-related Attacks .. 39

3.3.2 Network-related Attacks ... 43

3.3.3 Network attestation .. 45

3.3.4 Physical Attacks ... 46

4 SYSTEM PROPERTIES TO BE ATTESTED .. 47

4.1 Validation Properties .. 47

4.1.1 Static Properties ... 48

4.1.2 Dynamic Properties .. 49

5 APPLICATION USE CASES .. 51

5.1 Safe human Robot Interaction (hri) in automated assembly lines ... 51

5.1.1 Protection Goals and Attack Settings .. 52

5.1.2 Model of Use-cases Properties .. 56

5.2 secure collaboration of “platforms-of-platforms” for enhanced public safety 57

5.2.1 Protection Goals and Attack Settings .. 58

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 8 of 87

5.2.2 Model of Use-cases Properties .. 63

5.3 secure and safe aircraft upgradability & maintenance ... 65

5.3.1 Protection Goals and Attack Settings .. 66

5.3.2 Model of Use-cases Properties .. 70

5.4 digital security of smart satellites ... 71

5.4.1 Protection Goals and Attack Settings .. 72

5.4.2 Model of Use-cases Properties .. 75

6 CONCLUSION ... 77

REFERENCES ... 81

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 9 of 87

LIST OF FIGURES

FIGURE 1: OWASP CVE RANKING DIFFERENCES BETWEEN 2017 AND 2021 12

FIGURE 2: RELATION OF D1.3 TO OTHER WPS AND DELIVERABLES 15

FIGURE 3: POSITIONING OF ASSURED IN THE INDUSTRIAL REFERENCE ARCHITECTURE
(IIRA) ... 18

FIGURE 4: ASSURED MODEL REFERENCE ARCHITECTURE .. 25

FIGURE 5: DEVICE LAYER STRUCTURE IN THE SMART MANUFACTURING USE CASE .. 27

FIGURE 6: TYPICAL REMOTE ATTESTATION PARADIGM ... 30

FIGURE 7: SYSTEM COMPONENTS, CRITICAL COMPONENTS ARE GREYED OUT.
TRUSTED CODE IS EXECUTED INSIDE A TRUSTED EXECUTION ENVIRONMENT. 33

FIGURE 8: GENERIC ATTACK TREE GRAPH IN CONTEXT OF ASSURED 38

FIGURE 9: CODE INJECTION ATTACK REPRESENTATION ... 39

FIGURE 10: THE FOUR FUNDAMENTAL PHASES OF KEY ACQUISITION [69] 40

FIGURE 11: RUNTIME ATTACKS MANIPUATING PROGRAM CONTROL FLOW 42

FIGURE 12: MAJOR COMPONENTS FOR SMART MANUFACTURING 52

FIGURE 13: ATTACK TREE GRAPH FOR SMART MANUFACTURING USE CASE 54

FIGURE 14: PUBLIC SAFETY ECOSYSTEM .. 58

FIGURE 15: ATTACK TREE GRAPH FOR PUBLIC SAFETY USE CASE 59

FIGURE 16 SMART AEROSPACE CORE COMPONENTS AND SERVICES 66

FIGURE 17 SMART AEROSPACE ATTACK TREE .. 68

FIGURE 18 SMART SATTELITE COMMUNICATION SERVICES .. 72

FIGURE 19: ATTACK TREE GRAPH FOR SMART SATELLITES USE CASE 73

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 10 of 87

LIST OF TABLES

TABLE 1: ARTEFACT-CENTRIC MODELLING IN THE ASSURED USE CASES 27

TABLE 2: SMART MANUFACTURING CRITICAL ATTACK SCENARIOS 55

TABLE 3: MAPPING OF VALIDATION PROPERTIES FOR SMART MANUFACTURING USE
CASE .. 56

TABLE 4: PUBLIC SAFETY CRITICAL ATTACK SCENARIOS ... 61

TABLE 5: MAPPING OF VALIDATION PROPERTIES FOR PUBLIC SAFETY USE CASE 63

TABLE 6: SMART AEROSPACE CRITICAL ATTACK SCENARIOS ... 69

TABLE 7: MAPPING OF VALIDATION PROPERTIES FOR SMART AEROSPACE USE CASE 70

TABLE 8: SMART SATELLITES CRITICAL ATTACK SCENARIOS ... 74

TABLE 9: MAPPING OF VALIDATION PROPERTIES FOR SMART SATELLITES USE CASE 75

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 11 of 87

1 INTRODUCTION

1.1 DYNAMIC TRUST ASSESSMENT IN SOS ENVIRONMENTS

Seeking to design successful supply chain services comprising millions of autonomous Cyber-
Physical Systems (CPSoS), one has to cater to the security, trust and privacy requirements
of all involved actors, ranging from the heterogeneous edge devices to the backend cloud
systems. A key challenge is to establish and manage trust between entities, starting from bi-
lateral interactions between two single system components and continuing as such
systems get connected to ever larger entities. But the challenge ahead is how to make
sound statements on the security properties of single systems and transfer this to statements
on the security properties of such hierarchical compositions of systems (“Systems-of-
Systems”)?

Consider, for instance, the following security requirements in the context of the use cases
considered in ASSURED:

• In the domain of the envisioned “Smart Aerospace” use case, where Electronics
Control Units (ECUs) (e.g., Flight Management System, Environmental Control
System, Cockpit Flight Instrument) in an aircraft get connected to subsystems, and
subsystems are connected by gateways (Secure Server Router (SSR)) to form the
complete in-aircraft electronic system, and as such an aircraft gets connected to the
Ground Station Server (GSS) or other aircrafts.

• In the “Smart Manufacturing” use case, an IoT Gateway is used to connect the
robots operating within a manufacturing infrastructure, so that the permitted movement
of each robot can be determined centrally, taking into consideration the position of other
robots or human workers.

• In the “Smart Cities” use case, IP surveillance cameras and smoke detectors, as well
as a series of PLC controllers for controlling the surveillance systems, constitute the
Serafio complex, which is controlled through an Information and Communication
Technology (ICT) system and an operations center, which consists of a cloud-based
infrastructure with various the networking components and computational resources.

• In the “Smart Satellites” use case, a Ground Station (GS) serves as a central unit,
which is able to monitor, maintain and control various CubeSats, which are miniaturized
satellites that perform specific missions in space. It is also possible for multiple
CubeSats to collaborate in order to perform complex services and functions.

This kind of security requirements extends also to other industries and domains beyond the
ones that are envisioned in ASSURED. For example, in the automotive industry, ECUs get
connected to subsystems, and subsystems are connected by gateways, in order to form the
complete in-vehicle electronic system of a vehicle. As such, a vehicle gets connected to an
OEMs backend system in connected cars or linked to other vehicles in V2V communication,
creating an environment where the security level of a vehicle cannot be viewed in isolation,
but in tandem with the entire network of connected cars.

From all the above, it follows that the notion of securing a single, isolated device is outdated,
since it cannot guarantee the trustworthiness level required by organizations with a complex
CPSoS. However, given the increasing complexity of these systems, statements about
integrity of the overall system or the confidentiality of specific data items are harder and
harder to make. Therefore, the question that is raised and that we attempt to answer in this
deliverable, and with the ASSURED attestation services in general, is the following: How can
we make sound statements on the specific security properties of single systems (that are

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 12 of 87

sufficient to depict the required level of trustworthiness) and transfer this to statements on the
security properties of such hierarchical compositions of systems?

In order to reply to this question, we first need to refer to the type of attacks that pose a threat
to “Systems-of-Systems” environments with complex CPSoSs. In ASSURED, we aim to
address the ever-changing landscape of attackers and types of threats, by mitigating the most
prominent threats to a CPSoS that can be addressed by the provided trust assurance services.
For example, the Open Web Application Security Project (OWASP) [1] maintains a yearly
updated ranking list of Common Vulnerabilities and Exposures (CVEs), which is formulated
by taking into consideration factors such as Exploitability, Detectability, Likelihood and
Technical Impact, and by performing community surveys on application security and
development experts, as well as using practical data from various organizations regarding the
severity and frequency of occurrence of each threat and vulnerability.

FIGURE 1: OWASP CVE RANKING DIFFERENCES BETWEEN 2017 AND 2021

Figure 1 depicts the latest published OWASP ranking of CVEs for the year 2021, as well as a
comparison with the corresponding list from 2017. By observing the evolution of the attack
landscape, it becomes apparent that the concept of fulfilling security and privacy requirements
for isolated assets or devices is becoming an increasingly outdated notion of security, and the
construction of a security- and privacy-aware Service Graph Chain (SGC), that takes into
consideration the positioning of each asset in the hierarchical composition of a CPSoS is the
way to move forward. In other words, the importance of classical network attacks is in a
downward trend, while software-related vulnerabilities are becoming more prevalent and a
lucrative target to be exploited by sophisticated adversaries. Specifically, some of the relevant
attacks whose prevalence has increased significantly throughout the past few years and are
relevant to the considered use cases are the following:

• Broken Access Control: Refers to unauthorized information disclosure, modification,
or destruction of data or performing a business function outside an authorized user’s
limits, due to an attacker tampering with the access permissions. Consider the Human
Robot Interaction (CRI), where this issue is of critical importance, since unauthorized
access to a robot may cause severe injury to a human worker. The attestation services
provided by ASSURED together with the advanced identity management schemes
(leveraging the concept of Verifiable Credentials) will address this, by verifying that the
authorization status of the robots is in a trusted state.

• Security Misconfiguration: A malicious modification in the configuration of a device,
enabling access by a malicious party. This is relevant to all use cases, since all devices
need to be protected from threats resulting from an untrusted configuration. This is
mitigated by employing the newly developed Configuration Integrity Verification (CIV).

• Vulnerable and Outdated Components: Outdated components are notoriously
susceptible to security threats and attacks, since they may be loaded with firmware or
application software that has not been patched in order to be protected from newly
identified threats. This falls under the category of software vulnerabilities that can be

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 13 of 87

mitigated by attestation services, verifying that the components possess the latest
software versions.

• Insecure Design: Refers to architectural flaws related to design methodologies that
cause vulnerabilities. Therefore, this category does not refer to a specific kind of
vulnerability, but design and coding practices that make devices and systems more
susceptible to various kinds of attacks. These can be detected with the help of
attestation, so that they can be patched in future versions of the software.

• Cryptographic Failures: Encompasses failures and attacks related to cryptographic
functions and cryptographic primitives. This is of particular importance in the smart
satellite use case, which employs a variety of cryptographic schemes and protocols for
communication of the base station with the deployed satellites and can be mitigated by
the ASSURED traffic verification and attestation services.

From all the above, it follows that software-related threats and vulnerabilities pose a serious
threat to the trustworthiness level of an ecosystem and have become increasingly prevalent
over the past years. As it will become apparent throughout this deliverable, the integration of
Trusted Computing technologies with novel attestation schemes provides an effective solution
towards the mitigation of this kind of attacks, since such advanced assurance mechanisms
can detect anomalies in the device configuration and execution of processes in each asset
of a CPSoS (software or hardware asset). To this end, depending on the type of devices and
services, we need to be able to map the properties that need to be attested with the
corresponding devices. Note that this mapping can potentially be used as a guidance for the
definition of protection profiles, or the enhancement of already existing ones; as have been
proposed by the standards (ISO/IEC JTC1/WG13 and ISO/IEC JTC1/SC27). This refers to
the low-level properties that need to be attested for specific hardware, and can be
enhanced by employing the modular protection profiles defined within ASSURED as
part of the service graph representing the CPSoS, and can be used to achieve the required
trustworthiness level of the entire system. We will further expand on this notion in D2.2 [2].

The considered attack landscape, in tandem with the type of CPSoS considered within
ASSURED, will also provide justification for the type of attestation schemes implemented as a
part of the trust assurance services. Specifically, the schemes that will be employed and will
be defined and expanded upon D3.2 [3] are the following:

• Configuration Integrity Verification (CIV), which ensures the trustworthiness of the
configuration of a device.

• Control Flow Attestation (CFA), which ensures that the flow of actions performed by
the software installed in a device is trustworthy.

• Swarm Attestation, which is used in cases where simultaneous attestation of multiple
devices working in tandem is required.

• Direct Anonymous Attestation (DAA), which provides platform authentication
capabilities in a privacy-preserving manner.

• Jury-based Attestation, which ensures the correctness of the entire attestation
process execution so as to capture any misbehaving entity; in the case where the
Verifier essentially “lies” about the system measurements provided by another Prover
device (Section 3.1).

1.2 SCOPE AND PURPOSE

The main goal of Deliverable 1.3 is twofold. First, to develop the modelling notation suitable
for ASSURED that is used to capture those safety-critical components and services,
comprising the Systems of Systems (SoS), and the interdependencies between them and the
underlying platform, which will aid the work of identifying critical properties needed to be

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 14 of 87

attested continuously. This is the second goal of this deliverable, namely, to determine the
validation properties that are crucial for the operational correctness and security of complex
SoS, not only platform configuration properties but also execution properties. Thanks to the
modelling of SoS we can focus on those components and services with the highest criticality
level. At the end, the output is then applied to four use cases envisioned in ASSURED,
mapping their adversary models with corresponding attestation properties. In the following
work packages, specifically WP3, we will develop attestation and validation schemes to
enforce those identified properties.

To this end, this deliverable evaluates existing models, such as Business Process Modelling
Notation (BPMN) and Case Management Modelling Notation (CMMN) and develops a
model suitable for ASSURED that can represent the business and technical processes relying
on Cyber-Physical System (CPS) environments. A model tailored for Cyber-Physical
Systems of Systems (CPSoS) enables us to capture only those processes (such as
algorithms, control, and device operational logic elements) with the highest criticality level, that
need to be continuously verified in real-time. This is also the basis for the efficient, effective,
and scalable attestation enablers.

The highlight of D1.3 is to identify a set of properties that model the correct configurations
and execution behaviours of critical components and therefore need to be continuously
verified. One of the core offering provided by ASSURED framework is the property-based
attestation that corroborates the fundamental security and non-security properties of entities
and extends this to a large SoS. These properties serving as a measure of trust should reflect
even minor status changes associated with attacks and abnormal operations. On this basis,
the properties form the basis for an evaluation of broader system-wide properties and assure
the cyber resilience in SoS-enabled supple chains. Thus, identification of suitable attestation
properties is a key for ASSURED project.

An explicit specification of system model and adversary model is a prerequisite for
capturing suitable attestation properties, which is presented in D1.3 including the system trust
anchor and the capabilities of adversaries at different levels. Depending on the system and
application domain, the required security and non-security properties vary considerably. Thus,
besides generic properties, we take full account of use-case specific properties for the
envisioned four scenarios in ASSURED. Finally, D1.3 demonstrates the applicability of the
model and attestation properties defined in this document towards the four use cases of
ASSURED. This entails the analysis of each use case’s threat model and security
requirements, and mapping between threats and associated attestation properties and
schemes. ASSURED framework will implement multiple attestation schemes corroborating
various properties to cover threats within all phases of a device’s execution.

1.3 RELATION TO OTHER WPS AND DELIVERABLES

As a subsequent document, Deliverable D1.3 directly gets input from D1.1, which defines the
use case scenarios and functional specifications for the entire ASSURED framework, and
D1.2, which specifies the ASSURED reference architecture including the components and the
communicating interfaces. This essentially sets the scene for the core building block of
attestation protocols that serves as the central mechanism towards enhancing the
operational assurance of the target SoS. On the other hand, this vocabulary of system
properties to be attested will also be embodied in the definition of the attestation-related data
sharing behaviours that will be fleshed out in D1.4. More specifically, depending on the safety-
critical nature of the service (and its subsequent properties to be attested) there might be
different requirements when it comes to confidentiality, privacy and sharing attributes. This
might relate not only to privacy when it comes to the Device ID but also to attestation

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 15 of 87

evidence privacy in the sense that a Verifier should be able to attest to the correct state of a
Prover device but without the need to know all the internal details of the Prover’s state.

With the identification of the system validation properties to be considered for attestation in
each one of the envisioned use cases, D1.3 also serves as a reference point for all the activities
in WP3 revolving around the design of the new breed of attestation schemes as will be
documented in D3.2, D3.3 and D3.6 and D3.7. Furthermore, these properties will set the scene
for the experimentation and evaluation of all attestation enablers, in the use cases, to be
documented in D6.2.

FIGURE 2: RELATION OF D1.3 TO OTHER WPS AND DELIVERABLES

Finally, D1.3 acts as a starting point of technical reference for the later WP4 technical activities
revolving around the design of the ASSURED Blockchain infrastructure for the secure and
auditable recording and sharing of all attestation-related data. Since ASSURED will
provide advanced crypto primitives for decentralized Attribute-based Encryption and Attribute-
based Access Control for this type of data, the structure and format of all validation properties
and system traces to be considered is of paramount importance so as to make sure of the
modelling of an international attestation data space model.

1.4 DELIVERABLE STRUCTURE

This deliverable is structured as follows. In Chapter 2, we present a detailed explanation of
how we build the model to be employed by ASSURED. We review the state-of-the-art trust
management techniques in supply chain ecosystems, as well as the SoS modelling notations.
We will explicitly define the criterion that a model needs to fulfil to be used in ASSURED. In
the end of Chapter 2, we introduce the ASSURED model combining both artefact-centric
modelling and data-driven activities that dictate the status of the edge devices.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 16 of 87

In Chapter 3, we elaborate on several key definitions that constitute the foundation of the
ASSURED attestation enablers. Chapter 3 starts with the definition of attestation and
verification. Next, the system model and the “as is” system properties are defined, which
specify the safety, security, and privacy requirements that need to be fulfilled, even under
attack. To understand the adversary capabilities and goals, we also provide a comprehensive
adversary model for SoS. Given protection goals and potential attacks, we summarize a set of
configuration and execution properties to be attested and verified to enhance the operational
assurance and program correctness. In Section 4, we elaborate on the static and dynamic
validation properties, which are used by the attestation mechanisms in order to determine that
a system-of-systems is in a trustworthy state. Based on the model introduced in Chapter 3 and
the attestation properties elaborated in Chapter 4, we demonstrate a detailed analysis of each
use case scenario in ASSURED in Chapter 5. We apply the model to use cases to identify
those safety-critical components, define the adversary model and select matched attestation
properties. Finally, Chapter 6 summarizes and concludes the deliverable.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 17 of 87

2 APPROACH AND MODEL

We previously presented a list of the most prominent threats and vulnerabilities in the current
cybersecurity environment, and we highlighted the threats whose prominence is in an upward
trend, and the ways that these threats can be addressed by the attestation services provided
in ASSURED. Taking this into consideration, we next aim to identify and define the properties
that should be attested, as well as the cyber-security and trust model, so that we can
consider that the target CPSoS can is in an acceptable and trustworthy state.

In general, this approach can be either activity-driven or asset-driven. In an activity-driven
approach, cybersecurity assurance is evaluated based on the actions taken by the assets of
the CPSoS, while in the asset-driven approach, the focus is placed on the assets or devices
themselves, their configuration properties, and their current state. In ASSURED, we follow an
asset-driven approach, which is also referred to as artefact-centric. Throughout this chapter
we will expand upon this notion and provide justification for its selection.

To this end, we will define the asset modelling approach that will be employed, which will
provide the basis for the extraction of the properties to be attested. We consider that each
hardware asset can contain and run multiple software assets, and based on the asset
cartography, we should be able to identify what processes are executed and which attacks
are more impactful, so that we can subsequently define acceptable states. We will also define
the notation that will be used in order to express these properties, so that the operational and
security status of the system can be accurately represented with the required level of
granularity. Also, note that artefact-centric modelling will provide the basis for the definition of
the protection goals and attack settings per use case, which will be provided in Chapter Error!
Reference source not found..

When referring to “Systems-of-Systems” that are used in various domains in the industry, such
as the use cases considered in ASSURED, this constitutes the secure continuum of the edge
and the cloud working in tandem in a trustworthy manner. This is referred to as the edge-cloud
continuum digital trust. In this context, ASSURED is conceptually positioned to be within the
Industrial Reference Architecture (IRA) [4], which is presented in Figure 3, along with the
positioning of ASSURED within the IRA. The IRA consists of the following layers:

• The Field, which contains the devices and assets of the system, as well as the various
stakeholders.

• The Edge Control, which contains the ASSURED security mechanisms that are used
to securely control and manage the devices of the system.

• The Ledger, which constitutes the secure medium that is used in order to exchange
data and perform management operations.

• The Cloud, which is the operational centre, i.e., the backend of the system, where
cloud and supply chain applications are executed.

Among the aforementioned categories, the focus in ASSURED is to secure the Field and the
Edge (physical devices, sensors, and gateways), by identifying the appropriate security
mechanisms that are contained in the Ledger and are managed by the Cloud. In this context,
we aim to identify the processes that should be secured. Note that the types of data to be
secured are further addressed in D1.4 [5].

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 18 of 87

FIGURE 3: POSITIONING OF ASSURED IN THE INDUSTRIAL REFERENCE ARCHITECTURE (IIRA)

Towards this direction, ASSURED will adopt key technologies, in the field of trusted
computing and lightweight cryptographic trust anchors, as enablers for the secure
deployment, and verifiable assurance of safety-critical components running at the edge and
the secure communication, between interacting entities, by enabling advanced key
establishment mechanisms. This will include trust extensions, leveraging remote attestation
schemes, guaranteeing the trust relationships between all layers in the SoS run-time
stack.

2.1 MODELLING CYBER-SECURITY ASSURANCE AND TRUST IN
COMPLEX SOS

When we refer to cyber-security assurance witihn ASSURED, we aim to go beyond the
classical notion of cybersecurity, which focuses on the protection of individual assets from
network attacks. Here, we aim to capture the interactions and security relationships within the
assets and define a holistic security approach, so that we can eventually achieve the desired
level of trustworthiness in an entire “System-of-Systems” environment. To this end, we employ
assurance and attestation services that consider the security of the system as a whole.

By using such assurance and attestation services, ASSURED increases the level of
trustworthiness and integrity of the overall SoS-enabled ecosystem.This does not only include
the integrity of the constituent hardware and software assets (and the data they
exchange), but goes beyond this notion to also capture the security relationships and
interactions between such system components in the context of a trusted service graph
chain. Particularly with respect to safety and security, components must be enabled to make
and prove statements about their state and actions so that other components can align their
actions appropriately and an overall system state can be assessed and security policies can
be evaluated and enforced. Recall, for instance, the example scenario that was described in
Section Error! Reference source not found. where single ECUs, in an aircraft, may be able
to remotely attest to other devices that they are in untampered state of integrity and have up-
to-date and valid input data available on which it bases its decisions. Based on such a proof,
another ECU may then decide (based on a security policy) that it can accept commands from
the earlier ECU without risking the safety and security of the overall system. For example, the
landing stability control ECU may accept data from wheel sensors based on which it will control

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 19 of 87

the vehicle’s brakes. This can be expanded to ensure the safety and security of an overall
aircraft and then of systems of aircrafts communicating with the ground station.

Such security relationships, between system components, are initially extracted from the
operational goals of the service running and provided by the overall SoS, and complement the
security – in a comprehensive and systematic way – by uncovering additional security
objectives between related components to produce and integral security solution. They are
usually defined by three concepts, namely isolation, interaction and representation.

 An isolation relationship exists when a component is partially or totally separated, i.e.,
isolated, by a second component, from other components located inside or outside a
system. Examples can be considered software processes, running as part of the
computing base of a system, whose execution must be done in isolated environments in]
order to minimize the attack surface; or a data bus that isolates the information transmitted
between two digital circuits. Such a relationship essentially dictates the very strict
integrity requirements on the input data needed by a component towards progressing
with its execution. For instance, in the “Safe Human Robot Interaction” scenario, as part
of the Smart Manufacturing use case, the function for calculating the worker’s position in
a manufacturing floor is based on data coming from the location sensors that need to be
either protected by a dedicated data bus or through advanced attestation mechanisms.

 An interaction relationship exists when two components interact or communicate in any
way. The actual executed functions or the purpose of the communication are not relevant
by themselves in the context of security, but only the location of the interactions for the
purpose of identifying security requirements of the interacting components. For instance,
in the previous scenario, examples of interaction relationships include the location
calculation software process interacting with the underlying operating system, or the
information transmitted between the location sensor’s driver and the processing
application software.

 A representation relationship exists between a system component acting on behalf of
another component. Components participating on a representation relationship can be of
any type, namely physical or digital without restrictions, and they enable the joint or
gateway between different categories of components. Again, in the aforementioned
scenario, an example of a representation relationship could be the collection of all system
data, from the deployed robot arms to the Industrial Gateway, that represents the correct
state of the entire manufacturing floor – in the context of safety environmental conditions
with no fatal worker accidents.

By adopting such a cyber-security architecture, we claim that a SoS can withstand even a
prolonged siege by a pre-determined attacker with known or unknown capabilities as the
system can dynamically adapt to its security and safety state. This is substantially more
flexible than traditional security mechanisms that often try to maintain and enforce pre-defined
policies using rather static security mechanisms. We, essentially, provide a very high level of
operational assurance in integrity, security, and finally safety of the target SoS-enabled
ecosystem as we actively manage the system states by permanently engaging with all
involved devices and components in the context of a specific service graph chain. This
stems from converting all components to roots-of-trust, capable of providing verifiable
evidence on their correctness, and using these roots-of-trust to establish and maintain trust
relationships. Once a trusted chain is materialised, secure chain communications can be
established and used to provide trusted chain-wide system updates. Thus, using the concept
of a trusted service graph chain, trusted communities of services can be created within the
“Systems-of-Systems”.

To construct such “trusted chains of services and devices”, we need to break them down to a
composition of multiple heterogeneous devices in order to be able to identify the types of
properties that need to be (periodically) verified per device (and their running software

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 20 of 87

processes). However, towards this direction, it is also imperative to have a baseline of system
specification common to all the edge devices.

2.2 IN THE SUPPLY CHAIN WE TRUST

Several cybersecurity assurance models have been proposed in the literature, in the context
of various domains of the industry. Next, we present a state-of-the-art analysis of the methods
that have been proposed, in the domains that refer to each of the use cases considered in
ASSURED, i.e., the smart city domain, the smart satellite communication domain, the
smart manufacturing domain and the safe aircraft upgradability and maintenance domain.
Each of these is characterized by different needs and security requirements, which should be
addressed by the cybersecurity assurance solution that will be applied.

Taking into consideration the state-of-the art that will be presented for all the considered
domains, we can afterwards define the goal of the cybersecurity services provided by
ASSURED. In the previous section, we introduced the types of relationships between assets
(isolation, interaction, and representation). However, as it will become apparent throughout
this section, the trust models proposed in the literature are obsolete in this regard, because
the state-of-the-art in cybersecurity models does not capture this full set of relationships that
need to be considered in order to achieve the desired level of trustworthiness of an entire
“System-of-Systems”, but only a subset of them. In ASSURED, we aim to cover this gap, by
proposing a security model that captures all three types of asset relationships. Next, we
describe how we aim to achieve this, by placing the ASSURED security services in the context
of the envisioned use cases.

2.2.1 Smart City Domain

Smart City domain: Trust models for this category of systems have been introduced in the
recent years [6][7], since the concept of smart cities is a rather new and has been launched
after 2014. The key-factors in the models include [8][9]:

• Actors, users, management of interactions

• Applications, data

• Network, IoT, devices.

The main tool for trust management is the Business Process Model and Notation (BPMN),
applicable to diverse domains for the modelling of processes, annotations, data objects etc.
and it has been applied also for smart city processes [10]. Recently SecBMPN2BC has been
developed for research purposes and tested in case-studies including a city process [11].
SecBPMN2BC is an evolution of SecBPMN that DAEM has tested and used for the modelling
for city processes in the H2020 project VisiOn “Visual Privacy Management in User Centric
Open Requirements” H2020 – DS – 2014 – 1 – IA - GA 653642 [12][13]. The specific case-
study for the application of SecBPMN on city processes referred to citizen data privacy by
design during the consumption of a city service, more specifically, the issuance of a birth
certificate. This case has been further researched for the evaluation of SecBPMN2BC that
aims extend BPMN 2.0 for the design of business processes for Blockchain with a model driven
approach.

2.2.2 Smart Satellite Communication Domain

In order to provide assurance in Smart Satellite Communication services, a Trust
Management System (TMS) for Satellite Flight Software (FSW) tele-commanding that
detects anomalous behaviour is proposed by Duncan [14], implementing the multiple trust

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 21 of 87

mechanism TMS framework proposed by Zhao and Varadharajan detailing a unified trust
management framework [15] and following an architecture similar to KeyNote TMS [16].

According to the TMS proposed by Duncan, Trust mechanisms allow trust relationships to be
evaluated by system policies. The main trust mechanism proposed is the Interaction Trust (I-
Trust) mechanism, which monitors the behaviour of entities in the system based upon
interaction markers. The I-Trust mechanism consists of functions which calculate and maintain
I-Trust values for entities communicating with the FSW. Each entity being tracked by the TMS
can have multiple trust markers associated with it. A separate I-Trust value is calculated for
each marker associated with an entity. These I-Trust values are later used to make policy
determinations in the system. Credential Trust and Policy evaluation mechanisms are also
mentioned along with a proposal for additional trust mechanisms that can be used (e.g.,
environmental trust mechanism).

According to Manulis [17], the trend for more part of communication stack to consist of SW
instead of hardware opens the system to software threats and therefore they propose that
future implementations should take in mind how to trust software to behave as intended to be.

Attacks can target the ground segment, the communications, and the space segment. Security
threats for ground segment can include physical attacks, computer network exploitation, data
corruption and outdated software deployed. Main security threats at communication level can
include jamming, interception of data over a communication channel (eavesdropping),
hijacking and spoofing. When it comes to the space segment, some threats can include
software vulnerabilities and replaying recorded transmissions.

Some of the open challenges mentioned from Manulis for the satellite and ground segments
are the following:

- Need for lightweight authentication and secure communications considering the

CubeSat area and power consumption limitations.

- Key management in terms of scalability, group of dynamics (CubeSats entering and

leaving constellations, assign & revoke key respectively), key protection and quantum

key distribution.

- Software and firmware updates, handle introduction of vulnerabilities.

ASSURED can adress these above mentioned open challenges through the use of lightweight
cryptoprimitives, key agreement protocol, software & control flow attestation and use of block
chain technology. Specific properties to be attested by assured include the hash of software
services (on Ground Station & CubeSats).

2.2.3 Smart Manufacturing and Smart Factory Domain

Security within the context of this domain is of utmost importance when it comes to integrating
Industrial Internet of Things (IIoT) solutions to existing infrastructure. The notion of
introducing technologies like Blockchain has been taken up by research as well as Open-
Source / Proprietary providers, which in turn is providing a better overview of introducing Trust
as well as Security within these smart manufacturing scenarios.

Each provider has a large set of tools and information that comprise of their ecosystem when
it comes to providing IoT / IIoT Security with Blockchain Technology to form a trust model
within a smart manufacturing unit. Large Enterprise solution providers such as IBM, SAP,
Accenture provide their own proprietary solutions for introducing trust management via
Blockchain through their own cloud platforms. The solutions are developed on a consultancy-
based model and are generally highly narrow-focused based on the manufacturer’s criteria.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 22 of 87

Solution provider MultiChain [18] provides an OSS (Open-Source Software) / Commercial
solution. The OSS variant provides basic features for smaller enterprises to get started on a
simple adoption of Blockchain, and eventually fulfil increased requirements and demands by
moving from the open-source solution to the commercial solution. Multichain provides a
diverse ecosystem and software suites for external key management, permission consensus
as a governance model, clustering and high availability and wallets for private key
management. Their software suite is available online under the GPLv3 License [19] with
commercial licenses and support offered on a consultancy basis. DoubleChain [20] provides a
Blockchain-based platform for management of IoT Devices and assets, as well as other forms
of asset and supply chain management. DoubleChain provides a patented authentication
solution for IoT devices called AEGIS which uses Blockchain to provide trust management at
the device level. OriginTrail [21] provides a Blockchain platform solution that focuses on data
interoperability and increased collaboration between enterprises in the smart manufacturing
area. OriginTrail relies on GS1 standard’s Electronic Product Code Information System
(EPCIS), which provides a sound foundation for representing data in a fixed format, thus
making systems and products in manufacturing systems more coherent and easily reliable and
transparent through usage of Blockchain. A similar solution is provided by WaltonChain [22],
where Radio Frequency Identification (RFID) systems can be integrated and transparently
maintained through Blockchain integration.

A more mature ecosystem is IOTA [23], which provides a wide range of software suites and
documentation for various purposes. The Industry Marketplace from IOTA [24] is a vendor as
well as industry-neutral platform which focuses on automation of trading of physical and digital
goods and services. This marketplace provides a transparent and reliable way to share
process and manufacturing information through trust models and encrypted channels to
necessary third parties and stakeholders. It provides Decentralized Identifier Identification
(DID) for secure authentication in a decentralized manner.

2.2.4 Secure and Safe Aircraft Upgradability and Maintenance Domain

In this case, since we consider the safety of aircraft where issues may pose a severe risk to
the wellbeing of human passengers and personnel, it is imperative to employ a comprehensive
security solution, that takes into consideration all the components of the system, such as flight
management modules, environment control systems and on-board wireless services.

One security solution for smart aerospace environments has been proposed by UTRC [25].
Specifically, the need to move to an automatic and remote approach to deal with the
maintenance of both physical and cyber elements of the aircraft has been outlined throughout
the document, particularly in sections III-D and III-F.

Also, in the ARINC technical reports, ARINC 827 [26] and ARINC 835 [27], the methods for
to ensure safe software distribution in aerospace environments was discussed. Specifically,
the use of a signature is proposed, which is only checked when installed on the device. While
this is a good starting point, checking the signature only when the software is being installed
is not enough and ASSURED would improve this by using run-time attestation mechanisms.

2.3 OVERVIEW AND COMPARISON OF EXISTING MODELS

Since ASSURED aims to develop a holistic framework targeting the cyber resilience in the
supply chain domain, it is highly essential to be able to represent business and technical
operations in such a way that allows deterministic interpretation of acceptable states. This
essentially defines what constitutes a “normal” behaviour of an edge device that needs to be
considered for attestation and verification, prior to making a decision on the correctness of a
device’s state. It is important to note that the criteria for defining acceptable states are also

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 23 of 87

related to the properties that should be attested, taking into consideration the attack landscape
that was presented in Section Error! Reference source not found.. The selected cyber-
security assurance and trustworthiness model should take into consideration these factors in
order to best address the requirements of a CPSoS operating within the ASSURED
environment.

In the context of cybersecurity assurance, Business Process Management (BPM) models
are frequently used in software development for understanding the behaviour of the users,
their requirements, while resources are either human or non-human assets, e.g., software,
apps, or IT devices. These models should provide a representation of business operations that
includes entities, entity types (e.g., cyber, physical, human), interactions, interaction
types, protocols, attributes, etc. As aforementioned, this modelling is the cornerstone of the
ASSURED attestation mechanisms. Several notations are nowadays available to model
business processes at different levels of granularity. Currently in the literature, the two most
prominent types of BPM models are a) the Business Process Modelling Notation (BPMN)
and b) the Case Management Model and Notation (CMMN), and c) the Decision Model and
Notation (DMN).

BPMN is an activity-centric notation aimed at capturing business processes [28] and is under
the supervision of Object Management Group (OMG) [29]. BPMN is the standard for
modelling business processes and is widely used in both industry and academia. BPMN is
based on flow-based modelling notations, such as UML activity diagram and IDEF [28]. It is
designed to facilitate both communication between various process stakeholders [30] and for
specifying requirements for software systems [31]. BPMN consists of tasks that represent the
activities to be performed, gateways that route the sequence flow, events representing things
that happen during the execution of a process, data capturing the flow of information and swim
lanes depicting those responsible for the execution of the activities. Although BPMN perfectly
captures the control flow among the activities and is also appropriate for modelling the
inter-dependencies between manual and automatic tasks, it is lacking an effective support
in modelling the data management, which is fundamental in the scope of security analysis
in “Systems-of-Systems”. To address this issue, it has been proposed to consider smart
devices as first-class citizens in the models [32]. Such extensions aim to make BPMN
suitable to capture the role of CPS in business processes.

In contrast to BPMN, CMMN is an artefact-centric and declarative modelling notation,
designed to support case management and handling for dynamic changes [33]. The aim of
CMMN is to assist with modelling the flexibility required for knowledge workers and the
exceptions that occur in such declarative processes [34]. The main difference between CMMN
and BPMN is the paradigm shift from procedural to declarative model [35][36]. In ASSURED,
business process models will include an enriched data model able to give the opportunity
for the designer to increase the awareness with respect to the data managed securely
by the CPS. Focusing on data produced and/or consumed by the elements in the CPS gives
the ability to the modeler to abstract from the intricacies of the underlying platform and to
concentrate on the data. In this respect, ASSURED will also investigate the adoption of the
CMMN notation, to model knowledge-intensive business processes relying on CPS
environments, where no specific control-flow can be identified but most of the activities are
driven by the changes of data status which can be driven by event occurring during the
execution of the process. Also, it is important to consider that, availability or unavailability of
data which depends on the status of the smart devices involved in their management, could
affect a successful completion of the process. For this reason, according to the security-by-
design pillar, ASSURED will also investigate how to embed in the business process
models information about data alternatives which can compensate the missing data, as
well as sub processes which can be enacted in case original activities are
compromised. It should be clarified that models will be totally aligned with IIRA and RAMI 4.0
Patterns.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 24 of 87

Another model complementary to the BPMN and CMMN models is the Decision Model and
Notation (DMN), that also introduced by the OMG group and converts the code behind
complex decision-making into easily readable diagrams [37]. All the three models outlined in
this section are called the “triple crown” of business modelling notations, intended to
bridge between business and IT by providing graphical representations.

Even though the notion of BPM modelling has been extensively studied in the literature, it has
rarely been studied in tandem with the notion of trustworthiness. One relevant research
effort was presented in [38], where the integration of trustworthiness requirements in business
process models using BPMN was proposed, and it was suggested that trustworthiness should
be considered in the management of both human and non-human resources and in all stages
of the business process life cycle (i.e., design, modelling, implementation, execution,
monitoring and analysis). However, there is a lack of discussion on how to build the required
level of trustworthiness. In addition, a conceptual four-stage model of trust-aware process
design in BPM has been proposed in [39], which is based on reducing either uncertainty of
specific process elements, or the vulnerabilities. A more recent work in [40] proposes Trust
Mining, a business process modeling tool to analyse uncertainties and relationships based on
previous work in [39].

2.4 SELECTION CRITERIA FOR THE ASSURED MODEL

From the above sections, it follows artefact-centric modelling is more appropriate to be
considered in the context of ASSURED, since it allows us to concentrate on the specific
cases and scenarios offered by the envisioned use cases. As artefacts we consider all the
comprised devices – the difference in the ASSURED ecosystem is that we can use both the
extraction of specific control-flows as well as activities that are driven by changes of the
data/device status. Thus, this requires the identification of the core properties that need to be
considered for attestation towards the enhanced trust assurance of field elements.
Specifically, taking into consideration the requirements that have been outlined in the previous
sections, the selection criteria for the cyber-security assurance and trust model employed by
ASSURED are as follows:

• The model should be able to capture all three kinds of security relationships outlined
in Section 2.1 (isolation, interaction, and representation), in order to cover the full range
of asset relationships to fully capture the requirements of a CPSoS belonging to any
domain. As it was previously mentioned, the existing modelling methodologies are
outdated in this regard, therefore ASSURED should provide a solution in order to
address this issue.

• The ASSURED model should be able to provide trust assurance based on the
properties that define acceptable states (property-based attestation), meaning the
properties that can be used in order to ensure that the assets comprising the CPSoS,
as well as the entire system-of-systems, can be considered to be in a trustworthy state.
These properties are defined by the threat landscape presented in section Error!
Reference source not found., where it was shown that software-based vulnerabilities
are becoming increasingly prevalent.

2.5 ASSURED MODEL

The hybrid model adopted will consider an extension of the CMMN but combining both artefact-
centric modelling and data-driven activities that dictate the status of the edge devices. This
way ASSURED trust management includes both a) modelling of the interdependencies and

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 25 of 87

interactions of the artefacts and b) modelling of the correctness and trustworthiness of the
artefacts per se. The key aspect of ASSURED hybrid model is the role of enablers to extend
the data sharing and security to the digital supply network. This capacity, jointly with the
increasing demand by Industry 4.0 towards enhanced data sharing, will generate new
opportunities to smoothly integrate ASSURED into the mainstream evolution of IIoT and
Industry 4.0 Reference Architectures (i.e., RAMI 4.0 [41]). Towards this direction, ASSURED
modelling is compatible with the reference architectures that have been proposed by the two
key industrial consortia that are advancing the development of IIoT, namely Platform Industrie
4.0 and Industrial Internet Consortium, as shown in the figure below. These initiatives have
developed RA models for Industry 4.0: the Industrial Reference Architecture (IIRA) and the RA
Model for Industrie 4.0 (RAMI). RAMI 4.0 supplements the IIRA model with the axes “Lifecycle”
and “Hierarchical Levels”, while each of the four viewpoints outlined in IIRA reference
architecture can be compared with the respective layers on the vertical axis of RAMI 4.0.

FIGURE 4: ASSURED MODEL REFERENCE ARCHITECTURE

ASSURED captures the operational processes and the various assets, of both RAMI 4.0 and
IIRA and extend them for the case of digital supply networks comprising an ecosystem of
collaborative manufacturing environments. The developed, enhanced and proved a trusted
framework for attestation and system assurance is represented in Figure 4, where it is evident
the alignment with the RAMI 4.0 and hence IIRA reference architectures. More precisely, the
vertical axis represents the interoperability layers of RAMI 4.0, while the horizontal axis on top
represents the hierarchy levels of RAMI 4.0. The following seven layers summarise how
ASSURED hybrid model aligns with these reference architectures and how can be applied in
the “Systems-of-Systems” used cases of Section 4.

1. ASSURED Secure Field Devices Execution Layer: Operational assurance and
resilience, hardware-based collective attestation and verification – This layer
covers the supply chain from physical assets to the produced information and applies
to the hierarchy levels of RAMI 4.0 namely “Field Device”, “Control Device” and
“Station”.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 26 of 87

2. ASSURED Field Devices Control: Attestation and verification, monitoring events
and data status changes, operation process deployment – This layer covers the
transition from the real to digital world to the assets functions and applies to the
hierarchy levels of RAMI 4.0 namely “Field Device”, “Control Device”, “Station” and
“Work Centres”.

3. ASSURED Field Device Secure Analytics – This layer acts as an umbrella and
covers all the interoperability and hierarchy levels of RAMI 4.0, apart from the “Product”.

4. ASSURED Advances Secure On- and Off- Chain Data Management – This layer
covers the transition from the real to digital world to the assets functions and applies to
the hierarchy levels of RAMI 4.0 namely “Work Centres”, “Enterprise” and “Connected
World”.

5. ASSURED Access Control Policies based on Attribute-Based Encryption – This
layer covers the access to information in general and to the necessary data and applies
to the hierarchy levels of RAMI 4.0 namely “Work Centres”, “Enterprise” and
“Connected World”.

6. ASSURED Distributed Ledgers Layer: Advanced supply chain control services –
This layer covers the asset functions and applies to the hierarchy levels of RAMI 4.0
namely “Work Centres”, “Enterprise” and “Connected World”.

7. ASSURED Cloud-based Storage – This layer covers the transition from the real to
digital world to the organisation and business processes and applies to the hierarchy
levels of RAMI 4.0 namely “Work Centres”, “Enterprise” and “Connected World”.

2.5.1 ASSURED Use Cases Artefact-Centric Modelling

Contrary to the traditional approach to industry in which a hardware-based structure with a
clear communication hierarchy was prevalent, Industry 4.0 introduced flexible systems
whose functions are not bound to hardware but distributed throughout the network. In these
new systems internal communication can now be observed across an organisation’s
hierarchical levels. New types of interactions have been introduced and external
interactions between organisations have changed significantly and become more flexible. The
result is that Industrial Controls Systems (ICS) are a prime target. These systems are
increasingly Internet-enabled for easier monitoring and control. But moving to open
systems with IP addresses creates more avenues for attack – especially if Internet access
is poorly protected and ICS protocols for authentication are weak. Total financial losses
attributed to security compromises jumped 38%. It could be argued that extracting monitoring
data is a primary resource for cyber incident analysis.

Thus, to fully understand the ASSURED ecosystem, one should identify the main Industry
4.0 components based on current RAMI 4.0 reference model for manufacturing Industrial
IoT and supply chain environments. From a security point of view, such components can be
placed into the following categories:

➢ Industrial Control Systems
➢ IIoT End Devices – Sensors
➢ Control Systems Communication Networks and their Components

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 27 of 87

FIGURE 5: DEVICE LAYER STRUCTURE IN THE SMART MANUFACTURING USE CASE

Figure 5 depicts a conceptual overview of the layered structure of devices in the Smart
Manufacturing use case (as an example), which demonstrates the types of relationships and
interconnectivities between the assets that constitute the system architecture, as well as the
levels of authentication that can be performed between these devices. For example, same
level authentication can be performed between devices of the same level, where one acts as
the Prover and the other acts as the Verifier. Conversely, in cross level authentication,
attestation between two devices can be performed via a device belonging to a higher level,
when a direct connection between the two devices is not available.

In Table 1, we provide a categorization of the devices and assets employed in the context of
each use case into each of the categories mentioned above, in accordance with the RAMI 4.0
reference model, which will provide the basis for the artefact-based modelling methodology
that will be followed.

TABLE 1: ARTEFACT-CENTRIC MODELLING IN THE ASSURED USE CASES

 Industrial Control Systems
IIoT End Devices –

Sensors

Control Systems
Communication

Networks and their
Components

Smart
Manufacturing, Safe
Human Robot
Interaction (HRI)

The various robots and
robotic arms operating on the
manufacturing floor are
connected and controlled by
Programmable Logic
Controllers (PLCs). These
can be accessed by an OPC-
UA Server running on an
Industrial PC. An IoT
Gateway processes the
collected data with collision
detection algorithms.

The robots that
constitute the
manufacturing system
can estimate the location
of themselves and the
human workers in the
factory floor in order to
avoid accidents, by using
various integrated
location sensors.

An Ultra-Wide Band
Wireless Location
System collects location
information from the
robots that operate on the
manufacturing floor. The
PLCs and robotic arms
are connected over a
PROFINET network.

Smart Aerospace
A wide range of operations is
managed by various ECUs,
which constitute the Flight
Management Systems

Each of the on-board
cyber-physical systems
contains a set of
sensors, which serve to

A Secure Service
Router (SSR) gathers
sensor data while flying,
and transfers the data to

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 28 of 87

(FMS), Environment
Control Systems (ECS),
Cockpit Flight Instruments
(CFI), and on-board Wi-Fi
systems. These are all
centrally controlled by a
Ground Station Server
(GSS).

assist operations
pertaining to flight
management or
environmental control,
and measurement of
flight data.

the GSS through a
cabled connection, such
as an Ethernet
connection, when the
aircraft reaches the
ground.

Smart Cities

The edge devices and
surveillance processes are
controlled by PLCs. The
system is centrally controlled
by an Information and
Communication
Technology (ICT) system.

A set of IP surveillance
cameras and smoke
detection sensors are
employed in order to
generate data streams of
video and sensory data,
respectively.

A cloud-based
infrastructure contains
networking components
to support the operations
center.

Smart Satellites

A Ground Station (GS)
serves as a central unit,
which monitors, maintains,
and controls the operation of
the deployed CubeSats.

CubeSats are
miniaturized satellites,
which are deployed in
order to perform specific
missions in space, and
are integrated with
various hardware assets,
such as cameras and
sensors to collect
telemetry data.

Communication between
the GS and the
CubeSats, or between
two CubeSats, is
performed via secure
channels. It is also
possible for the Ground
Station to share data with
external stakeholders.

Having identified the artefacts that constitute the operational system in each use case, the next
step is to identify the type of data that should be exchanged, as well as which are the
security, privacy and trustworthiness requirements that should be fulfilled. Also, a
quantification of the attack vectors needs to be performed, which will afterwards lead to the
mapping of attestation properties that correspond to each type of attack. Based on this
mapping, we need to identify which are the possible types of attacks that need to be considered
for each asset, and subsequently which types of properties need to be attested in order to
mitigate these attacks. This notion will be expanded throughout this deliverable, and the
categorization of these properties per asset and type of attack will be presented in detail for
each use case in Chapter Error! Reference source not found..

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 29 of 87

3 ASSURED EDGE DEVICES ABSTRACTION MODELLING

Having defined the model of trustworthiness we want to achieve for a complex SoS-enabled
ecosystem (to be further elaborated in D2.2 [2]), this Chapter proceeds with elaborating on the
process for capturing critical platform configuration and execution properties that need to
be considered – during attestation – in order to provide adequate detection measures against
the most prominent types of attacks and vulnerabilities (Section 3.3). In addition, we present a
generic explanation of those properties, as system abstractions (Chapter Error! Reference
source not found.), to be considered when fleshing out such resources that need to be
verified in the context of all four envisioned use cases (Chapter Error! Reference source not
found.). This will set the scene for the definition of the optimal attestation policies and
resources to be attested that need to be enforced to all hardware assets – of each use case
asset cartography [2].

The intuition behind this mapping is to identify what types of properties are violated by
specific attacks. ASSURED, as will be described in D3.2 [3], employs novel, scalable
attestation and verification schemes to corroborate the critical properties of edge
devices as a means to mitigate attacks and establish “trusted chains of devices” within a SoS-
enabled ecosystem; from the trusted boot and integrity measurement of a CPS, enabling
the generation of static, boot-time or load-time evidence of the system components’ correct
configuration (Configuration Integrity Verification (CIV)), to the runtime behavioural
attestation of those safety-critical components of a system providing strong guarantees on
the correctness of the control- and information-flow properties (Chapter Error! Reference
source not found.), thus, enhancing the performance and scalability when composing
secure systems from potentially insecure components.

In the following, first define the terms attestation, verification, and events (Section 3.1), as
well as provide the system specifications considered for the edge devices (Section 3.2)
comprising the SoS-enabled ecosystem. Since the concept of remote attestation is the core
building block in ASSURED for guaranteeing the operational assurance of a system and
hierarchical composition of systems, such a definition will enable us to better frame the concept
of cyber-security assurance in such complex environments.

3.1 SETTING THE SCENE AND RELEVANT DEFINITIONS

As the name suggests, attestation is a trust establishment method that enables an entity (i.e.,
Prover) to gain trust of other entities (i.e., Verifier) by providing reliable and verifiable evidence
on its correctness and operational assurance. In a typical attestation paradigm, as shown
in Figure 6: Typical remote attestation paradigmFigure 6, the Verifier knows the expected
legitimate configuration h’ of the Prover. Additionally, Prover and Verifier are equipped with
Attestation keys (AKs) used for protecting the integrity of the exchanged attestation reports.
During the attestation process, the Verifier sends a challenge or a nonce N to the Prover (Step

➀). This nonce is essentially a random value so as to guaratee the freshness of the attestation

and protect against replay attacks. As will be described in D4.1 [42], in ASSURED, we aim for
a random but re-producible nonce so that any entity (through the deployed smart contracts
depicting the enforced attestation policies) can verify its correct generation; based on the hash
of the last block header from the ledger. Upon receiving the challenge, the Prover measures

its (software or configuration) state (Step ➁), concatenates the measurement h with the

challenge N, signs the result with its AK and returns an authenticated response δ to the Verifier

(Step ➂). Since the Verifier knows the expected legitimate configuration of the Prover h'

(through reference values, that have been provided by the System Administrator, as system
behaviour descriptions during the cartography of all software assets of the target SoS) and the

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 30 of 87

challenge N, the Verifier computes δ' and compares it with the response δ received from the

Prover (Step ➃). If δ matches with

FIGURE 6: TYPICAL REMOTE ATTESTATION PARADIGM

δ', the Verifier claims that the Prover is trusted; otherwise this is a strong indication of risk
that the Prover is compromised and further investigation is needed. In this context, all
monitored traces, collected when extracting the device’s measurement, are sent to the Attack
Validation Component [43] for further analysis and identification of the exact intrusion point so
as to then define any additional needed countermeasures.

Based on the Verifier’s location, attestation schemes are classified into two categories: (1)
Remote Attestation, in which Prover and Verifier reside in different devices and the remote
Verifier triggers the Prover’s attestation, as depicted in Figure 6, and (2) Local Attestation, in
which Prover and Verifier may reside in the same device and the Prover self-triggers
attestation. ASSURED is envisioned to support both of them through the definition [3] of remote
schemes for attesting the executional and behaviour correctness of a system (i.e., Control-
Flow Attestation, Swarm Attestation, Jury-based Attestation) and local schemes for privacy-
preserving platform authentication (i.e., Direct Anonymous Attestation) or certifying the
configuration correctness of a device (i.e., Configuration Integrity Verification) prior to allowing
it to perform an action; i.e., check the integrity of a loaded binary prior to the device been
allowed to use the data outputed by this software binary.

In this context, without loss of generality, in ASSURED, we define the following unified notions
of attestation and runtime verification:

 Attestation only refers to the procedure of collecting (Verifier) and/or generating (Prover)

attestation reports, and sending attestation reports to other entities (Steps ➁ - ➂ in Figure

6). ASSURED specifies the attestation details as part of the attestation policies to be
deployed and enforced through the use of smart contacts [42], e.g. what kind of
information needs to be collected, the types of system properties that need to be attested,
whether the attestation report is sent to Verifier or threat intelligence engine?

 Verification is a computing analysis paradigm based on obsering the system’s behaviour,
through the sequence of events performed as the system executes, and comparing it
against what constitues the expected behaviour. Such events may, for instance, depict
the configuration sequence of a device (e.g., list of loaded binaries) or the software
behaviour correctness by verifying the integrity of a specific control-flow – these
are included in the collected attestation reports. More specifically, runtime verification
refers to the process where a Verifier validates the signature of an attestation report and

verifies the Prover status through information included in the report (Steps ➃ in Figure 6).

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 31 of 87

This is needed for guaranteeing the integrity of the collected system states by the Prover
– against compromised Provers which may try to impersonate the tracer processes
running. Compounding this issue, we need to have strong mechanisms for secure
identify provisioning, integrity and authenticity of the collected measurements, and
secure key management and distribution all of which are provided in ASSURED
through the newly designed TPM-based Wallet that can offer all the necessary trust
properties as well as secure communication with the host tracer [44].

Recall that the aim of the ASSURED framework is the cyber resilience of the entire supply
chain (Section 2.1) against an enhanced threat model, including advanced memory-related
attacks like run-time control-flow attacks (Section 3.3.1). Therefore, it is imperative to capture
suitable behavioural and low-level concrete execution properties of a Prover depicting
both its overall state as well as the state of specific internal components (e.g., software
processes) needed as part of the various identified security relationships with other systems.
To this end, it is envisaged to perform both Configuration Integrity Verification (CIV) and
Control-Flow Attestation (CFA) [3]: Not only static properties such as code and
configuration integrity, but also dynamic properties like control-flow and data-flow information
are captured by ASSURED attestation enablers. Therefore the attestation mechanism can
disclose the corrupted integrity of mission-critical assets, and disrupted tasks executed on the
edge devices.

In this context and in order to mitigate the common drawbacks of current attestation schemes
when it comes to efficiency, scalability and robustness [45], ASSURED uses property-based
attestation on a specific set of critical configuration and execution properties of the
target SoS and their comprised devices. The intuition behind this is that most of the current
limitations mainly stem from the fact that existing attestation mechanisms try to verify the
integrity, during run-time, of the entire (untrusted) code base of commodity platforms and
operating systems without also considering additional constraints posed by the existing
relationships and interactions with other systems as part of the entire service graph chain.
Considering that competitive supply chain application markets will always produce innovative
and large systems that consist of diverse-origin software-based components, with uncertain
security properties, it can be considered that a sub-set of such loaded software functions can
be efficiently protected (in near real-time) against sophisticated run-time exploitation attacks.
Hence, the adoption in ASSURED of the artefact-centric modelling notation, so as to frame the
correct type of system properties for representing the operational and security status of
core devices and highly critical services.

Critical platform configuration and execution properties include both behavioural
properties and low-level concrete properties about the platform’s configuration and
execution, such as the current firmware version it is running, the version of its configuration
file or presence of certain hardware properties, integrity of sensor measurements, execution
paths to specific memory regions, ports and network interfaces, etc. It also includes abstracting
these low-level values to higher level security properties or functions, e.g., custom algorithms
running on edge devices. Following this concept and the type of abstract validation properties
to be to considered (Chapter Error! Reference source not found.), we have identified the
exact type of system properties that need to be attested (both for the hardware and software
assets) in the context of the four envisioned use cases (Chapter Error! Reference source not
found.) – using the model representation as put forth in Section 2.5 and the voccabulary of
ISO/IEC/IEEE 24765:2017 on “Systems and Software Engineering”.

The legitimate state of the static properties can be defined both during the design and
run-time phases of a system’s execution lifecycle, while most other critical execution
properties will require run-time verification. For instance, the integrity of a loaded binary
can be verified during boot up but might be also required to be attested when the system wants
to be securely enrolled to a network (i.e., to be part of a smart manufacturing floor). On the
other hand, the run-time verification of monitored control-flow events depicting the state

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 32 of 87

changes of a software or hardware system requires run-time monitoring and attestation
probes. Thus, ASSURED will employ enhanced tracing techniques [3][46] to monitor the
configuration and behavioural properties of interest and collect the runtime evidence of those
properties, which will be developed in context of WP3.

3.2 SYSTEM SPECIFICATIONS AND ASSUMPTIONS

In what follows, we document the system model and adversary model considered within the
overall ASSURED architecture. More specifically, we will describe the generic system model
of devices, comprising the target SoS-enabled ecosystems (will also constitute the baseline
for the envisioned use cases), whose properties need to be attested, the critical and non-
critical system components, and their requirements regarding operation, safety, privacy,
and security. In addition, we present an explicit specification of the adversary model
envisioned in ASSURED that covers different type of adversarial capabilities.

A high-level description of the system model, as part of the edge device architecture, is
depicted in Figure 7. More information is also given in D3.1 [44], where the exact modelling of
the trusted computing base per device is described and in D3.2 [3], where the detailed break-
down of the edge system architecture is put forth for enabling the execution of the ASSURED
attestation enablers. Besides common hardware components like commodity processors,
communication busses, memory, and peripherals, we assume the existence of a trusted
component, namely a Trusted Platform Module (TPM), which is in line with other attestation
work. TPM contains a unique device identifier that is unforgeable and inaccessible for
unauthorized entities. This identifier together with other cryptographic keys (Attestation Key,
Secure Communication Key, Device Credentials, etc.) are safely stored in a secure storage
that maintains integrity and confidentiality. Moreover, we assume that the hardware provides
trustworthy and correct security engines such as a True Random Number Generator (TRNG),
cryptographic hashes, and encryption algorithms. TPM is part of system’s Trusted Computing
Base (TCB), which means that TPM is trusted by default. Likewise, other core ASSURED
components like the Tracer, the (TPM-based) Wallet and trusted OS functionalities (e.g.,
kernel functions) are crucial to the overall security process, thus, are considered to be trusted.
These critical components are represented by grey boxes in Figure 7.

The white boxes in the overall system architecture represent the code and data of the
software processes running on the device, including the Operating System. These
programs perform the core operational functionality of the device, but can be prone to many
cyber attacks, such as code injection attacks, runtime software attacks, malicious software
updates, network-related attacks, etc. For instance, a code injection attack can exploit a
software vulnerability on the device’s software and compromise the program executed in the
device with malicious code. Likewise, it can exploit a software vulnerability in the Operating
System (e.g., buffer overflow exploitation) to compromise provided functionalities; from
compromising buffers used for the tranmission of packet payloads to exploiting the entire stack
for extracting secrets such key material [47]. Additionally, a runtime adversary can subvert the
control-flow execution of a device’s program without injecting any new code. A comprehensive
discussion of the adversary model is presented in Section 3.3. Based on the capabilities of the
modelled adversaries, the security of the non-critical components is provided by the critical
components running on the device which, in turn, will be used for monitoring and tracing the
system state events and properties that need to be verified towards the creation of trust- and
privacy-aware service graph chains.

In ASSURED, the critical components attest to the security state of the devices, which
include both the hardware- and the software-state. Specifically, the Tracer introspects the raw
memory of the device and parses the memory to recover security-related information about
the current state of the device. This information is used by the Verifier to detect whether a

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 33 of 87

potential attack occurred and to update the risk level associated with this specific device. For
example, the Tracer can recover the control-flow of a safety-critical program executing on the
device; e.g., the worker’s location calculation in the context of the HRI scenario in the Smart
manufacturing use case. The recovered control-flow can be used in a control-flow attestation
protocol to detect whether a non-critical component deviates from its expected control flow.
The Tracer may also extract global device information, which is not related to a specific

FIGURE 7: SYSTEM COMPONENTS, CRITICAL COMPONENTS ARE GREYED OUT. TRUSTED CODE IS EXECUTED
INSIDE A TRUSTED EXECUTION ENVIRONMENT.

program such as the currently executing processes on the device and can be used for malware
analysis.

The strong security guarantees offered by critical components makes them a prime target to
attacks. Compromising them would effectively render the security mechanisms they provide
invalid. Protecting the critical components is therefore fundamental, yet it is challenging:
Software-only protection mechanisms, such as memory safety incurs high-performance
overheads, which may be unacceptable for use cases considered in ASSURED. Instead, to
secure the critical components we assume the existence of a Trusted Execution Environment
(TEE) on the device (Figure 7). The TEE protects the confidentiality, integrity, and
freshness of code and data embedded within it by isolating it from the rest of the
software executing on the device. The critical components are deployed in the TEE
(comprising the “trusted world” of an edge device), whereas the non-critical components are
deployed outside the TEE denoting the “untrusted world”. We have to note, however, that
increasing the code that is running as part of a device’s TEE has an exponential impact on the
performance of the device, since this will require multiple interactions between the trusted and
untrusted worlds. In some cases, this may also require the use of additional data buses. Hence,
in ASSURED, we keep this trusted codebase to the minimum: essentially, we only consider
as trusted the Tracer which is responsible for the device runtime data and execution
stream monitoring and introspection as well as the core building block of the Blockchain
Wallet which essentially is the TPM. For the latter, the accompanying TPM Software Stack
(TSS) for interacting with the TPM is not part of the considered trusted world.

The TSS is a middleware that provides a multi-level API to applications for accessing the TPM.
Through the APIs provided by the TSS, operating system and the users’ applications can utilize
the security functionality provided by TPM (in the context of ASSURED, the entire TPM-based
Wallet). Several instantiations of TSS have been implemented in different languages, such as
IBM TSS [48], Intel’s TSS [49], Microsoft’s TSS [50], Trousers TSS [51], Java TSS [52], and
Daonity TSS [53] etc. More specifically, it handles all the data from and to the TPM, which
includes marshalling/unmarshalling data, encrypting transactions for cryptographic sessions,

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 34 of 87

parameter checking etc. The TSS consists of three API layers that provide three levels of
abstraction, namely the SAPI, the ESAPI and the FAPI. The FAPI is the most feature rich layer,
and its purpose is to cover most of the use cases of the TPM as it includes ready to use
functions that require very little configuration. It is designed to be simple to use and make the
development of applications as easy as possible. The ESAPI is a little more advanced API and
is targeted to individuals who seek to have a little better control over what the TPM does.
Finally, the SAPI is an interface that requires expert knowledge of the underlying TPM
commands and architecture. The functions it contains can be directly mapped to almost every
command that the TPM can execute and it allows for fine grained control of the module. This
level freedom allows for misuse and errors, that is why it is of great importance to model all the
possible threats that may appear. The TSS is closely related to the TPM as they are closely
interconnected with the TSS being the gateway for all inbound and outbound communications
of the TPM.

However, as part of all the ASSURED security mechanisms, when designed, we will also
provide the option of weakening these trust assumptions by outsourcing some of the trust
calculations to external trusted entities such as the Privacy Certification Authority which is
responsible for securely onboarding a device into the overall system network.

3.2.1 Functional Properties of Systems and Components

Based on this Cyber-Physical System (CPS) architecture and in order to achieve the main
vision of ASSURED towards the creation of trust- and privacy-aware service graph chains,
in complex supply chain ecosystems, the first step is to model such CPSoS and break them
down to a composition of multiple heterogeneous components. Each of these components can
have their own functions and operational logic (as part of the entire service graph chain) that
need to be protected through various security and privacy-preserving policies. Such
policies can be established by identifying the security and privacy related objectives and
relationships between the comprised sub-components. Security and Privacy objectives
define what should be done about security, for targeted components, during the security
process for the entire lifecycle of a CPS – what type of system states need to be verified both
during boot-up and run-time; type of data need to be exchanged for authenticating a
component; privacy requirements when exchanging such data (even when verifying a system
state, this might reveal information on the software processes running to a device/component),
etc. Security relationships, as described in Section 2.1, between system components
complement the security and privacy properties, in a comprehensive and systematic way, by
uncovering additional constraints and dependencies – between components – that need to be
considered when designing and integral security solution.

In addition to security and privacy, all policies need to be aligned with safety requirements so
as to be able to guarantee the desired level of trustworthiness and correctness of the
outcome of a service – especially when, in many cases, we are dealing with safety-critical
decisions (becoming critical for human lives) such as the HRI scenario in the Smart
manufacturing application domain or the Secure Aerospace use case [54]. In almost all
branches of industry, such highly automated and nowadays autonomous systems already
perform several safety-critical control functions and operations, even for tasks they were
not designed for [55]. In the future, their scope will increase even further to completely and
fully autonomous safe operations; for instance, in the Secure Aerospace domain, autonomous
flying, efficient engine control and cloud-based connected aircraft power distribution can be
some examples of safety critical operations uploading securely data into the cloud, while their
vital operations are crucial for safe human transportation. These systems will cause radical
changes to secure and safe SoS, their supply chains, services, and business models in many
transport industries beyond the aerospace reshaping the secure and safe industrial landscape
in general [56].

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 35 of 87

As safety-critical SoS become more dependent in big data analytics and machine learning
approaches, their safety requirements become of paramount importance when exploring the
security mechanisms to protect the SoS-enabled ecosystem. Research in safety verification of
interconnected CPSoS has recently exploited standard analytic approaches in the form of
black boxes to identify situations of error, like inefficient cutting processes [57], corrupted
measurements [58], as well as falsification systems defining the safety of systems exploiting
data-driven approaches [59][60][61]. At the same time, security requirements sitting aside
with system safety requirements have to respect a series of additional functional properties
for system correctness, timeliness, liveness, fairness and accountability that will
safeguard the SoS constituents, actors or devices, from unexpected behaviors causing the
loss of human lives. More recently SoS system designers are looking also into the
survivability requirements of a safety-critical system (“Provided that the system will suffice
an external attack or an unexpected error, ensure that the system service will continue to
operate with no more than a 25% time delay”).

In the context of ASSURED, the endmost goal is to address this convergence of security,
privacy, and safety in a complex SoS ecosystem by assessing dynamic trust relationships
and defining a trust model and trust reasoning framework based on which involved
entities can establish trust for cooperatively executing safety-critical functions. This will
enable the exchange of verifiable evidence, on the correctness and trustworthiness of all
constituent devices and (hardware and software) assets, between entities that had no or
insufficient pre-existing trust relationships. Thus, beyond the identification of security and
privacy properties to be achieved, functional safety attributes also need to be considered as
inherent part of the overall trustworthiness management of a SoS ecosystem.

3.2.1.1 Functional Safety Properties

Towards this direction, the focus on correct decision making (automated) operations should
be governed by overarching properties [62]. The Overarching Properties are intended to
define a sufficient set of properties for making approval decisions that take into
consideration system level safety and security requirements. That is, when approval is
sought for using a particular entity on, e.g., an aircraft, if the entity can be shown to possess
these properties in their entirety, then granting approval for using that entity on an aircraft is
appropriate. Hence the name: properties because they encapsulate the “characteristic
qualities” necessary to justify approval; overarching because they are intended to
“encompass all” of the necessary properties.

Overarching Properties are labeled using three different tags: Intent, Correctness, and
Innocuity. Here are the statements of each.

 Intent: The defined intended behavior is correct and complete with respect to the desired
behavior.

 Correctness: The implementation is correct with respect to its defined intended behavior,
under foreseeable operating conditions.

 Innocuity: Any part of the implementation that is not required by the defined intended
behavior has no unacceptable impact.

3.2.1.2 Security Properties

From a security standpoint, the following functionality should be also provided for the system
to operate correctly. Such functionality will be used to map system level security requirements
combined with safety properties when the system is safety critical. To that extend, forming
overarching properties of and SoS ecosystem and verifying its behavior against them will be a
continuous process, starting from the design phase and validated during its operation through
correct decision making and policy enforcement.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 36 of 87

 Secure boot. Secure boot is a security standard that validates that a device boots with
software trusted by the provider. Effectively, the signature of every software component
is measured and verified to match the expected value. The check starts with the first
loaded software from read-only memory (ROM) up to the operating system. If any of the
measured signatures fails the check, the boot process fails, leaving the device in an
unusable state.

 Secure memory and storage. Devices are equipped with TEE, such as ARM TrustZone,
or other trusted components including a Trusted Platform Module (TPM) which would be
the basis of the ASSURED Wallet component. This essentially constitutes the security
token for converting the device to a decentralized root-of-trust. The Trusted
Component (TC) provides strong isolation for the code and data in it. Furthermore, the
strong isolation allows programs executing in the TC to securely manage cryptographic
keys, which are used to encrypt, and sign content saved in the storage. This allows TCs
to protect their data at rest even though it is not part of the TC itself.

 Attestation. Attestation allows remote users to detect a change in the expected system
state. This state includes the hardware, firmware, software deployed, and the dynamic
state of the system, such as the control-flow of executed programs. The TC software stack
manages the attestation report. Therefore, it is trustworthy. The report is encrypted and
signed before sending it to the remote user, which ensures the confidentiality, integrity,
and freshness of the report.

 Key management. Devices are equipped with a platform key that is exclusively available
to the TC. The TC uses this key to derive keys for different security purposes such as a
sealing key, which is used to access the storage, or an attestation key that is used in the
device attestation process. All key management trust attributes are defined in D3.1 [44].

 Secure measurement. The Tracer has sufficient privileges to access and measure the
memory of all software components of the device. The measurement can be used to
detect malicious activity in the device. The Tracer may be executed as part of the device’s
trusted computing base (Section 3.2). Thus, the Tracer is trusted to perform the
measurements and analyze them correctly.

 Safety requirements. Together with security considerations, safety requirements should
be also considered to be validated and verified. Different access control policies
generated by the SoS high level requirements (e.g., the satellite or aerospace use-case)
should enable safety critical directives/policies that the device or the network of devices
should adhere to.

3.2.1.3 Privacy-Preserving Properties

The last branch in the definition of the overarching properties that we need to take into
consideration when making approval decisions regarding the safety and security requirements
of the system involves the privacy-preserving properties. The goal of these properties is to
enable the execution of security functions, without divulging information regarding the
configuration or status of the communicating devices, thus preserving their anonymity and
privacy. The privacy properties considered in ASSURED are as follows:

 Privacy-Preserving Platform Authentication. Together with security considerations,
privacy requirements need to also be managed – especially considering the sensitive
nature of the information/data exchanged in safety-critical operations such as the one
envisioned in the context of the four ASSURED-related use cases [5]. In this context, one
of the core features would be for privacy-preserving platform authentication. This entails
the use of appropriate credentials that can prove the authenticity and integrity of a device
while hiding its identity. For example, consider the BIBA Safe Human Robot Interaction
(HRI) smart manufacturing use case. When a hardware provider needs to attach its robot
to the IoT gateway, this new device needs to be securely enrolled and registered into the

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 37 of 87

system. In this case, the enrollment should be performed by ensuring that the device is in
an authenticated and trusted state, but without requiring the device to disclose any
information regarding its state or configuration, in order to preserve its privacy. Recall that
ASSURED operates in a Zero Trust mode which means that there are no trust
assumptions on the state of a device. Prior to communicating with any device, a trust
relationship needs to be established based from security claims extracted from the
execution of the appropriate attestation enablers. However, as will be described in D3.2,
exchanging such information might entail data on the types of binaries loaded to a devices
or the actual execution path details during its operation. This information has been shown
in the literature that can pose a threat to the integrity of the device if shared with an
attacker, hence, it is vital to be able offer strong security and assurance claims but
with attestation evidence data privacy.

 Privacy-Preserving Communication and Exchange of Data. In the communication
between devices, it should be ensured that a set of conditions needs to be satisfied with
regards to the privacy of the communicating parties. For example, consider the Enhanced
Public Safety use case, which involves the use of IP surveillance cameras and smoke
detectors, as well as PLCs to control these components, as part of a city operation center.
In this case, privacy is of particularly importance, because face detection and recognition
algorithms are employed by the provided surveillance services which makes the
protection of the identity of the monitored parties an issue of utmost importance. The
privacy properties considered will be defined in D3.1 [44], and can be summarized as
follows:

o Anonymity: When a device receives network data, it should be ensured that
the data originates from an authenticated source, depending on the system
requirements. It should be possible to perform this authentication, without
divulging configuration information of the transmitting device.

o Unlinkability: When a device receives network data, it should not be possible
to link the received data to the source of transmission. In the aforementioned
use case, this is essential in order to protect the location of the monitored
parties, so that the monitored data cannot be linked with a particular IP camera.

o Untraceability: In the communication between devices, it should not be
possible to trace actions and details regarding the movement of the data within
the network. Similarly to the previous case, untraceability is an important part
of the protection of the monitored parties’ location and identity.

o Unobservability: It should not be possible for an external party to observe the
actions of a specific device belonging to a group of devices, such as the video
streams created by each camera that is part of the city infrastructure.

3.3 ADVERSARIAL MODEL AND ASSUMPTIONS

Recall the ranking of most prominent threats and vulnerabilities that has been presented in
Section Error! Reference source not found., which provides some insight on the threat
landscape that should be considered and addressed by the ASSURED attestation services.
Taking this into consideration, we provide an initial definition of the adversarial model
considered in ASSURED, according to the type and domain of the considered attacks. Note
that this initial definition of the adversarial model will be further expanded upon in D2.1 [63].

With the large number of interconnected devices, many adversaries are targeting Cyber-
Physical Systems of Systems (CPSoS) to access sensitive information of the devices, disrupt
their normal operation, and even corrupt the data and software to violate their legitimate
operations. Cyber attackers are increasingly using a complex set of tactics, techniques, and

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 38 of 87

procedures to perform sophisticated malicious actions against cyber-physical resources, such
as interconnected cyber-physical devices, networks, and software updates. The ultimate goal
of an attacker is to compromise devices and evade detection from the security mechanisms
deployed in the CPSoS. To deal with such an expanding attack surface, CPSoS infrastructure
requires beyond-state-of-the-art security mechanisms to guarantee the reliability of devices.

FIGURE 8: GENERIC ATTACK TREE GRAPH IN CONTEXT OF ASSURED

The main objective of adversarial modelling is to provide comprehensive and structured
analysis of adversarial actions, including various factors such as entities, time, frequency, and
attack stages. The analysis of this section aims to offer a holistic view of the adversarial
modelling for SoS, as it considers all possible capabilities of the adversaries, while it spans
across all the possible layers of SoS, considering Software and Network perspectives, and
adversaries that can physically interact with systems. Such a model aims to identify the security
threats, understand an adversary’s goal in attacking a CPSoS infrastructure, and define the
security properties that the novel security mechanisms should satisfy. In the following, we
present a broad classification of the adversarial types. This classification is also in line with the
adversary model described in the literature [64][65]. Note that, this section offers the holistic

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 39 of 87

view of the adversarial model of the project and a use case-oriented documentation is the focal
point of Section 4. In addition, it has to be stated that ASSURED aims to provide key attestation
technologies which can protect against a finite range of attacks, leaving out of the scope some
network attacks (such as jamming and eavesdropping) and physical attacks.

In Error! Reference source not found., we summarize the main goals of an adversary along
with the adversarial actions. The classification presented in the figure is reflected in the
following respective subsections.

Before we proceed to the documentation of the attacks, we need to highlight the special case
of privilege escalation attacks that could be the aftermath of any kind of attack that can grant
access to a targeted system. More specifically, an adversary is possible to infiltrate to a system
by exploiting a weakness or vulnerability of the untrusted stack of the system’s architecture
and then, penetrate further into the system by acquiring root privileges (escalation). Such an
offensive action will enable the attacker to interact with the components of the TCB of the
system through the manipulation of privileged processes that aim to interact with the trusted
world of the system. ASSURED will be in position to defend against privilege escalation attacks
that aim to undermine the operation of the critical components of the TCB (e.g., the tracer).
More specifically, as described in Section and presented in Figure 7, in the context of
ASSURED we will define those processes which will be responsible for bridging the normal
operating system (the untrusted world) with the TCB. This definition will set specific limits and
narrow down the scope of the monitoring process of ASSURED to only those processes which
are allowed to interact with the TCB. Thus, through runtime attestation, ASSURED will be in
position to detect prohibited interactions with TCB or to detect discrepancies in the operational
profile of legitimate interactions, as a result of privilege escalation attacks.

3.3.1 Software-related Attacks

A software adversary is a remote malicious entity that disrupts the regular operation of a secure
system by infecting it with malware. Typically, such an adversary violates the confidentiality
and the integrity of the system. The most prominent types of attacks that have been identified
are enumerated in the following sections.

FIGURE 9: CODE INJECTION ATTACK REPRESENTATION

Code injection: A code injection attacker introduces and executes arbitrary code into the
address space of a vulnerable application. In order to achieve this, the attacker exploits the
missing memory bound check and forces the application code to exceed the memory buffer
boundaries. To perform the code injection attack, an adversary typically sends to the target
application the malicious code along with the input data. When the application does not validate
the input length, the adversary sends larger input data than expected to overwrite the content
of the stack above the local buffer, as shown in Error! Reference source not found.. The

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 40 of 87

adversary sends input data, the malicious code, some padding that fills the rest of the buffer,
and a code pointer. This input overflows the local buffer and overwrites the return address to
point to the beginning of the malicious code. Thus the application reads the malicious address
and executes the malicious code.

ASSURED will provide the means to defend against code injection attacks either by static or
runtime attestation mechanisms. In case a code injection attack modifies the signature of the
attacked application, this attack vector will be captured by static attestation mechanisms. On
the other hand, if the attack does not modify the signature of the used binaries, the modified
control flow of the program’s execution will be captured by the runtime attestation mechanisms
of ASSURED.

Cryptographic key extraction: This kind of attack considers an adversary in position of
exfiltrating and locating cryptographic keys from the run-time environment of software-based
services even when their software layout and data structures in memory are unknown.

Key secrecy is required in all stages of the management of its life cycle i.e., during creation,
dissemination, storage, and usage. In fact, computing systems inherently require that any
program, including its data and instructions, be loaded into the main memory before being run
by the processor. Thus, while keys can be protected while stored [66], any conventional
program that performs keyed cryptographic operations must, at some point, have the key
material exposed [67] (known as the Key-Exposure Problem, KEP). In this context, adversaries
are able to infiltrate microcontrollers [68] and to exfiltrate cryptographic keys, during system
operation systematically, without affecting system operation. The authors in [69] exploited the
causality between transceiver invocation and utilization of keyed cryptosystems to acquire
timely memory extractions. In other words, since keyed cryptosystems inherently run post-
reception (e.g., to verify or decrypt an incoming payload), it becomes feasible, by periodically
exfiltrating conventionally used memory regions for storing run-time data (e.g., the memory
stack), to capture data belonging to the keyed cryptographic function during the inevitable Key
Exposure Window (KEW) caused by the KEP. In this way, an adversary could exfiltrate the
cryptographic key residing in the memory.

FIGURE 10: THE FOUR FUNDAMENTAL PHASES OF KEY ACQUISITION [69]

The runtime attestation offerings of ASSURED can form a defensive mechanism against this
kind of attack. More specifically, using Control Flow Attestation (CFA) it is possible to identify
those processes which are leveraged by the adversary to exfiltrate the required data from the

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 41 of 87

memory region of the system. In addition, Configuration Integrity Verification (CIV) can
also be used in order to mitigate attacks against cryptographic key extraction and to attest the
correctness of the creation of a cryptographic key. For example, when a key generation
function is executed, CIV can be used in order to check whether the cryptographic key has not
been manipulated, by verifying that the hash of the key is equal to an already known and
trusted hashed key value.

Time-Of-Check-Time-Of-Use (TOCTOU) Attacks: Remote Attestation (RA) techniques verify
the remote device’s state at the time when remote attestation functionality is executed, thus
providing no information about the device’s state before current RA execution or between
consecutive RA executions. This implies that presence of transient malware may be
undetected. In other words, if transient malware infects a device, performs its nefarious tasks,
and leaves before the next attestation, its temporary presence will not be detected. This
important problem, called Time-Of-Check-Time-Of-Use (TOCTOU), is well-known in the
research literature [70][71] and poses major challenges in the context of remote attestation.

Unfortunately, current remote attestation architectures share a common limitation: they only
measure a Prover’s state at the time when remote attestation code is executed by the Prover.
They provide no information about the Prover’s state before attestation and execution or its
state between two consecutive attestation executions.

ASSURED, in alignment with recent endeavours in the field [72], will aim to develop novel
attestation mechanisms able to resist against TOCTOU attacks, deploying attestation
techniques that can capture even the ephemeral presence of offensive actions that aim to
evade the legitimate operational behaviour of systems. The new attestation techniques will be
based on approaches that guarantee the freshness of attestation while Blockchain will be used
to ensure that even ephemeral execution deviations can be captured by the attestation
mechanisms.

Runtime attacks and control flow manipulation: Data Execution Prevention (DEP) [73] is a
security feature within an operating system that enforces Writable⊕Executable (W⊕X)
memory policy to prevent applications from executing code running on non-executable
memory. Consequently, attackers cannot inject shellcode into target process’s memory space
on the fly. Although DEP helps in mitigating code injection attacks, it does not prevent code-
reuse attacks where an attacker reuses and combines existing sequences of legitimate code
already loaded on the memory. Figure 11 illustrates a code reuse attack that subverts the
target program’s execution control flow without injecting any new code. The target program is
supposed to invoke either the privileged function or the unprivileged function, depending on
the value of variable auth. However, an attacker may exploit a vulnerability found in the
unprivileged function to overwrite the stored return address with the starting address of the
privileged function. In this way, the program control flow is altered during run-time and a
privileged function is erroneously executed.

1. return-to-libc [74]. Return-to-libc is a buffer overflow exploitation on a system that has
enabled stack execution protection. When Data Execution Protection (DEP) is enabled,
a standard buffer overflow attack does not work because DEP prevents the injection of
arbitrary code into a process’s address. To bypass DEP, a return-to-libc attack reuses
existing code that already presents in target process’s executable memory. After
exploiting a buffer overflow vulnerability, the attacker modifies the return address stored
in the stack to point to a function in standard libc library, thus realize a fake libc function
call.

2. ROP attacks [75]. Unlike traditional return-to-libc attacks that utilize function calls,
Return-Oriented Programming (ROP) attacks hijack program control-flow execution by
stitching multiple ROP gadgets together, i.e., short instruction sequences ending with

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 42 of 87

ret. Attacker needs to carefully search process memory for potential gadgets, either
reusing the existing instruction sequence, or deliberately misinterpreting code bytes,
e.g., from different starting points. The expressiveness of ROP attack is proven to be
Turing-complete when the code space is large enough. In other words, the attacker is
able to perform arbitrary computation.

3. JOP attacks [76][77]. Besides backward instruction like ret, forward instructions like
indirect call and jump also allow attackers stealthily control the program execution and
bypass defence techniques that harden the integrity of stack frames. Attackers search
useful gadgets in memory that ends with forward instructions and chain them together
with the aid of a special gadget called dispatcher to perform desired computation.

4. Apart from code reuse, runtime attacks are also an effective approach to extract
information. A number of randomization-based schemes, such as address space layout
randomization (ASLR), have emerged to mitigate code reuse attacks. The idea behind
this kind of defences is to randomize the memory layout, thus make it challenging for
attackers to reference gadgets. To overcome these defences, a new attack strategy,
just-in-time ROP (JIT-ROP) [78], is introduced to reveal the address of code modules
and generate ROP exploits on-the-fly. JIT-ROP starts with exploit the memory
disclosure vulnerability to acquire a single runtime memory address, which reveals the
content of corresponding code page. By recursively searching for pointers to other code
pages, JIT-ROP cumulatively discover more code pages until enough gadgets are
found. Another example of information leakage attack is Heartbleed attack [79] that is
caused by a memory disclosure vulnerability found in OpenSSL and leads to the
compromise of secret keys and confidential user data.

FIGURE 11: RUNTIME ATTACKS MANIPUATING PROGRAM CONTROL FLOW

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 43 of 87

5. Non-control data attacks [80][81]: Most runtime attacks modify the target program’s
control data, such as return addresses, function pointers, and indirect branch targets,
which leads to an execution path deviated from the original one and, therefore, can be
detected by Control Flow Integrity (CFI) defences. However, non-control-data attacks
may easily bypass these defences since this kind of attack has no explicit impact on
program execution path. Taken the memory bit-flip as an example, flipping one bit of a
security-critical non-control data, such as configuration data or user identity data, can
lead to the corruption of access control mechanism, privilege escalation, or omitting
variable initializations. The expressiveness of non-control data attacks is also proven
in previous work. However, non-control data attacks are harder to construct than
control flow attacks.

The aforementioned attack and its variations will be addressed by ASSURED using the
Control Flow Attestation (CFA) mechanism, which can capture deviations on the execution
profile of processes. Even though the attacker does not inject malicious code to subvert the
system, the deviation of the execution flow of the application will be reflected in the captured
traces and the attestation outcome.

Malicious software updates [82]: In the context of this attack, an adversary uses deceptive
methods to fool a user or force an automated process to download and install dangerous code
believed to be a valid update, but the update originates from a malicious and controlled source.
The attack may look like a regular upgrade of update process of core application provided by
the vendor of the system (or device) or by a 3rd party software provider. Although there are
several variations to this strategy of attack, the adversary aims to position and disguise
malicious content such that it masquerades as a legitimate software update which is then
processed by a program, undermining application integrity. The latitude of this attack is
immense as virtually all software requires frequent updates or patches, giving the attacker
several opportunities to attack a system.

Adversaries usually perform phishing-assisted variations on this attack that involves hosting
what appears to be a software update web site and then sending spam, phishing, or spear-
phishing emails to the organization's users requesting that they manually download and install
the malicious software update. Automated attacks involving malicious software updates
require little to no user-directed activity and are therefore advantageous because they avoid
the complex preliminary setup stages of manual attacks.

ASSURED will offer the technical means to defend against such kind of malicious software
updates utilising both configuration integrity verification and runtime attestation. The
ASSURED attestation mechanisms will attest the application binaries in order to guarantee
that there are no malicious updates and the signature of the used binaries and configurations
of the system reflect the correct operational status. In addition, through control flow attestation,
ASSURED will be able to detect deviations in the execution profile of an application that might
have been maliciously updated.

3.3.2 Network-related Attacks

Network attacks are unauthorized actions on the private channels within an organizational
network. Malicious parties usually perform network attacks to alter, destroy, steal sensitive
data or gain access to internal systems [83]. ASSURED Network security is therefore required
to control the access which can be carried out by these network attacks. We will discuss some
common network attacks to understand and to propose solutions to develop a network security
that can give uninterrupted and secure services to ASSURED use cases to protect ASSURED
networks and exchanged data that are vulnerable to different kinds of the network attacks.
Network attacks are mainly classified into two types:

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 44 of 87

• Passive: when sensitive information is screened and monitored, potentially
compromising the security of an organization.

• Active: when information is altered by a hacker or destroyed entirely.

Some of the most prominent network-oriented attacks that can threaten the Cyber-Physical
Systems of Systems are the followings:

Man-in-the-Middle Attack: It is a type of network attacks where the attacker secretly relays
and alters the communications between two parties communicating with each other. The
attacker makes independent connections with the victims and relays messages between them
and finally convince them that they are directly talking to each other over a private and secure
channel, when in fact the entire conversation is controlled by the attacker. In ASSURED,
secure communication between devices will be supported by the TPM. TPM will provide the
cryptographic primitives to enable secure and authenticated communication and defend
against MITM attacks.

Malware: Malware is malicious software such as viruses, ransomware and spyware, which
consists of code developed by cyber attackers, designed to cause significant damage to the
systems or can lead to unauthorized access to a network or a computer system. Malware can
be transformed exponentially rapidly between connected devices, once a device becomes
infected, it can connect to other devices via the internet and seeks access to more devices.
ASSURED attestation mechanism will be used in order to detect nefarious interactions of the
malware with safety critical process of the devices.

Denial of Service (DoS): A DoS Attack stops legitimate users from using a network, server, a
service, or other resources. The attacker seeks to make a machine or network resource
unavailable to its intended devices by interrupting the devices connected to the network. Denial
of service is typically accomplished by flooding the targeted device with extra unneeded
requests to overload the system and prevent some or all legitimate requests from being fulfilled
[84]. The protection against DoS attacks is out of the scope of ASSURED.

Compromised-Key Attack: When an attacker obtains a user password that represents a
secret key, this key is then considered a corrupted key. An attacker uses the
affected/compromised key to gain access to secure communication without the attack being
detected by the sender or recipient. The attacker may decrypt or alter the information by using
the compromised key to generate additional keys to give the attacker access to any other
secure communications. In the context of ASSURED, the management of the lifecycle of the
cryptographic keys will be connected to the underlined Root of Trust to be used. Thus, the
functionalities of ASSURED will be based on “proof of possession” for the keys generated by
the underlined Root of Trust.

Spoofing Attacks [85]: Spoofing is the act of impersonating a communication or an identity
so that it appears to be established with a trusted, authorised source. Some common spoofing
attacks are email spoofing attacks that are used in phishing targets, and caller ID spoofing
attacks that are often used to perform fraud. Attackers may also target more technical elements
of an organization’s network, such as an IP address, domain name system (DNS) server, or
Address Resolution Protocol (ARP) service, as part of a spoofing attack. In the context of the
communication protocol and services of ASSURED, the identity of devices will be linked with
the TPM. In this way, spoofing and impersonation attacks will be addressed by the intrinsic
qualities of the TPM.

Network attacks on the TPM: The presence of the host with such physical proximity to the
TPM, and the limited ability for the TPM to authenticate itself directly to a verifier, i.e., the TPM
can only respond to the host’s commands, makes the secure and authentic communications

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 45 of 87

between the TPM and an external verifier very challenging. The host, namely the TPM
Software Stack (TSS), can be an active man-in-the-middle attacker, i.e., can read the
messages between the TPM and an external verifier, delay or block the communication, modify
the messages, or append messages. It can also coordinate a group of compromised TPMs to
get credentials on compromised devices. The host can block the communication between the
TPM and an external entity causing a denial-of-service attack that makes a machine or network
resource unavailable to its intended users, by temporarily or indefinitely disrupting services of
a platform connected to the Internet. The host may delete some message in the communication
between the TPM and the verifier, such as in black hole attack when the host deletes some
messages that are supposed to be forwarded either to the TPM or to an external verifier. The
host can coordinate a set of malicious (compromised) TPMs to get credentials from a certificate
authority on compromised devices, such as spoofing attack in which a program successfully
falsify data, to gain an illegitimate advantage. A host may also change the destination of the
data sent from a TPM to an external verifier or vice versa. For instance, a host may send some
data that is supposed to be forwarded to a legitimate TPM to a compromised TPM instead. A
host may also abuse privacy in anonymous signatures, such as Direct Anonymous Attestation
(DAA) signed by the TPM, by simply disclosing the TPM identity.

Network attacks against the TPM will be partially addressed by the ASSURED artifacts. In fact,
through the use of policies and sessions we will be in a position to regulate the interaction of
the host with the TPM and the TCB. More specifically, in the context of D3.1 [44], we will define
the trust models, requirements and assumption that will define the interactions between the
host and the TPM. In this way, we will limit and concretely define the interactions and the
conditions under which the communication with the TPM takes place.

3.3.3 Network attestation

Decentralization of communications and processing at the network edge have become over
the recent years core design features of future secure networks as previously detailed. These
changes come in effect as ever increasing rate/bandwidth requirements and diminishing
latency, safety and security constraints rapidly pushed the limits of conventional, centralized
architectures based on few, large, remote critical infrastructure in favor of those relying upon
many, smaller, distributed radio, and network processing instances. Such measures not only
benefit of better QoS due to closer range links given increased deployment density, but also
provide cheaper, secure and more energy-efficient access to new revenue opportunities for
MNOs and CPSs alike.

NFV is among the key technologies that enable such latter solutions, at the same time also
opening the network architecture to third parties as well as providing security guaranties from
a secure containerization or network slicing point of view. As a result, Virtual Network Functions
(VNFs) and traditional Virtual Machine (VM)-based solutions are some of the key interoperable
(standardized for instance under ETSI NFV Working Group) blocks for network security
mechanisms alongside the Network Orchestrator (NO) [86][87] that could adapt attestation
mechanisms to their functionality. Network Slicing is yet another virtualization mechanism
enabling end-to-end secure slices physically running on the same infrastructure but satisfying
different policies and constraints [88]. These not only enable full-depth logical network virtual
separation of, network resources, but also compute and storage functionality. Embracing the
whole framework from a security standpoint, a dedicated prover entity originated from
ASSURED manages the several network slices, by assigning and monitoring them given the
requests coming from different agents-roles (i.e., operators –end-users or companies providing
their own services over-the-top) [89]. ASSURED will take however the secure emerging Edge
Computing trend of networking to a new level and proposes a distributed security architecture
based on attestation that can be rolled on commodity infrastructure (e.g., manufacturing,
transport, surveillance devices and satellites) capable of serving a fully secure network under
the high standards of next-generation applications and services. As portrayed earlier, such

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 46 of 87

infrastructure not only provides a decentralized efficient approach to communications, but by
its ubiquity is capable to support critical deployments and scenarios such as critical mission
support, on-demand network secure self-configuration or attack-tolerant networking. To
provision all the above, the network itself not only needs to be highly interoperable and
virtualized, but also requires a high degree of autonomous intelligence under certain security
policies.

Policy based secure networking is not a new concept [90], but to this point this has been usually
based on link metrics and qualifiers such as secure QoS, available rate, bandwidth, expected
latency etc. However, in the era of speed and increased mobility such qualifiers are highly
dynamic and typical statistically driven policies tend to become obsolete and inefficient, yet
aside their challenges to security requirements at the network level. The ambition of ASSURED
is to utilize a secure ambient, context, connection and situational information distributed among
the communication nodes running the attestation service in order to predict upcoming security-
critical network behaviour and optimize the securely the network resources for increased
coverage, allocation of bandwidth, while respecting security requirements.

3.3.4 Physical Attacks

This section considers an adversary with physical access to the hardware. The adversary
attempts to violate the confidentiality and the integrity of the system. It must be stated that such
physical attacks are out of scope of ASSURED. However, for purposes of completeness we
elaborate on state-of-the-art attacks for such an adversarial model. Hardware-oriented attacks
are left out of the scope of ASSURED as all the attacks require physical presence, which is
hard to achieve in ASSURED because multiple devices work in tandem to serve requests or
to support the operational goal of the use case deployments. In addition, these attacks are not
hardware/software agnostic, i.e., the adversary tailors the attack for a specific device and its
configuration. For example, the power signal measured during a Differential Power Analysis
(DPA) attack is unique to a program's control flow and the hardware that it is executed on. In
ASSURED, we consider heterogeneous devices, which makes mounting such attacks far more
challenging. Next, we describe the state-of-the-art attacks possible for such an adversary in
the context of ASSURED.

Side-channel attacks [91][92][93]. A prominent example of a side-channel attack is power
analysis and particularly DPA, in which the adversary tracks the power consumption of a
hardware device. The adversary relies on the fact that changes in voltages within the device
reflect changes in the performed functionality. Therefore, by measuring current changes, the
adversary learns a small amount of information about the manipulated data, violating the
confidentiality security property.

Hardware Glitch attacks [93][94]. An adversary may mount hardware glitch attacks, for
example, by glitching the voltage to the device. If timed correctly, this could affect the device's
core functionality or even cause a change for fetching or evicting data to the main memory.

Memory interposing attacks [95]. An attacker may install an interposer between the DRAM
and the DIMM socket before system boot. The interposer may then act as a man-in-the-middle
for requests and responses to the main memory. It can either snoop memory accesses by
duplicating the command bus signals and sends them both to the DRAM and a dedicated
signal analyser. Alternatively, the interposer could completely change the requests made to
the main memory, e.g., to read or write different values.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 47 of 87

4 SYSTEM PROPERTIES TO BE ATTESTED

The aim of this section is to flesh out the properties to be attested in context of ASSURED,
which represent the trust level of a system. Specifically, a set of functional specification and
validation properties that define the resources that need to be attested has already been
documented in Section 3.2, in the form of system specifications and assumptions, functional
safety properties, security properties and privacy-preserving properties. The successful
attestation of these properties can be used in order to provide verifiable evidence towards the
trustworthiness status of an entire system.

Taking the above into consideration, this Chapter is dedicated to providing definitions of all the
Validation System Properties that should be considered in the context of attestation, in order
to protect against the attacks that were presented in Section 3.3. This constitutes a first step
towards mapping these properties to the particular system architecture and requirements of
the use cases presented in Chapter Error! Reference source not found..

4.1 VALIDATION PROPERTIES

Chapter 3 introduces the capabilities and “as-is” properties of the underlying system, as well
as the adversary model of ASSURED, which is used in order to define the trust anchor of the
ASSURED attestation services, the potential threats, and the security objectives that should
be achieved. Compounding the output of Section 3.1 and the state-of-the-art analysis on
attestation schemes conducted in D1.1 [96], we will extract a set of configuration and execution
properties to be attested, that enables the operational, privacy, and security protection against
attacks specified in our adversary model. For each use case scenario, depending on the
potential threats and protection goals, a set of properties can be validated in ASSURED
attestation schemes to fulfil the operational, security, and privacy requirements.

Based on the type of captured information, attestation protocols can be divided into two general
classes: static attestation and dynamic attestation, also referred to as runtime attestation.
Similarly, we divide the validation properties, i.e., the properties to be validated in attestation
protocols, into static properties and dynamic properties. Static properties include some low-
level concrete properties, such as the firmware version, binary signature, and the presence of
specific hardware properties, which reflect the correct configuration of software and hardware
deployed on devices as part of the supply chain ecosystem. Many attacks start with injecting
malware or altering security configuration to gain unauthorized access or privilege in victim
systems, such as static code injection and malicious software update attacks. As an example,
these attacks, however, cause modified binary signature, violating the static property,
ASSURED is able to tackle these attacks by validating static properties. Dynamic properties
instead measure the correctness of operations and tasks executed in edge devices deployed
in the supply chain ecosystem. Advanced attacks intend to perform adversarial computation
by modifying the execution flow/control flow of legitimate software, so that classical defences
based on static properties cannot detect and mitigate them. In this case, dynamic properties
like control flow and data flow information play an important role, for instance mitigating various
runtime attacks. Note that static properties are sometimes also needed in runtime attestation
protocols as a measurement of trust in the correct state of the underlying devices. We will
present a technical introduction of these validation properties in the rest of this section.

Prover captures the required information, as specified by the validation properties, statically or
during runtime, and then generate an attestation report to be sent to verifier. The report may
consist of captured states itself, which may be the memory snapshot, a list of taken branches,
or a hash of binary. Alternatively, the prover can validate the captured state and only report
the check result to verifier. The latter option minimises the verifier’s workload and network

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 48 of 87

traffic, but needs to be implemented under more strict assumption, namely the prover is unable
to interfere validation process and forge check result.

Note that, the dependency between components needs to be considered as well when
analyzing the system and determining validation properties. For instance, an application to be
attested relies on an OS service. Even though the application passes the validation, an attacker
can stealthily interfere in the application through the compromised OS service. Hence, each
use case partner needs to meticulously analyze the dependency between components and
define the TCB. Dependent components should either defined as part of the TCB, or they
should be explicitly attested so that their trustworthiness is ensured.

4.1.1 Static Properties

Static properties refer to properties that indicate the static state or non-execution behaviours
of systems, e.g., unmodified binaries, legitimate hardware components, or device
configuration. These properties can be captured at any time during the operational lifecycle,
prior to runtime, during, or after runtime. As the name suggests, static properties remain
unchanged during a long timeframe. Therefore, there is no strict restriction to the capture the
timing and duration of static properties. Besides, the size of the captured information is much
smaller compared to the dynamic properties, since the static properties do not change
frequently.

Multiple attacks included in the ASSURED adversary model can be mitigated by validating
static binary, such as static code injection, malicious software update, and malware. Thanks
to their time-invariant nature, static properties are generally easier to collect, report, and
validate, but also limits its capability as static properties cannot disclose adversarial behaviours
occurred during runtime.

In context of ASSURED, we measure the static state of edge devices deployed in supply chain
ecosystem with the following properties.

Static binaries, including program code and static data, should be verified before being
loading into the memory. Injection of malicious binaries through existing vulnerabilities on a
system targeted by an attacker is a common method for malicious parties to steal confidential
data, perform adversarial operations, or obtain unauthorized privilege. Therefore, we should
assure that the program binary is provided by authorized partners. Also, it should be ensured
that the binaries, the code, and the static data are unmodified, and the program version is up-
to-date and not vulnerable, especially for the binary loaded into TCB, e.g., the tracer.

Dynamically loaded libraries, which can be utilized by attackers to evade static binary
validation, need to be attested as well. Nowadays programs increasingly rely on dynamically
loaded libraries in order to reduce the binary size and maximize code reuse. These libraries
are linked to programs during runtime and are shared among multiple programs
simultaneously, which avoids code base duplications, but also increases the attack vector. In
order to mitigate library-based attacks, we should assure that the libraries are properly
measured before being used by other programs. It should also be ensured that the version of
libraries is up-to-date and not vulnerable.

Hardware components are also a crucial static property, especially for those hardware
components served as the system trust anchor, such as the TPM, which is the cornerstone of
device authentication and establishment of the trust chain. Otherwise, an attacker can easily
bypass or compromise attestation schemes or secure communication within the Blockchain
network by using an incorrect TPM or extracting secret credential from the TPM. Therefore,
we should also attest that the installed hardware components are legitimate, for example via
the serial numbers, and the firmware and secret credentials are valid and uncompromised.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 49 of 87

4.1.2 Dynamic Properties

In contrast to static properties, dynamic properties reflect the execution behaviour of prover
devices and are able to disclose runtime attacks, thus attestation of dynamic properties
requires to record program behaviours during runtime, for example the taken indirect branches,
and memory accesses. Dynamic properties may drastically change over time, even in a benign
case. The key challenge is to differentiate benign changes with malicious changes. One
common approach is based on program Control Flow Graph (CFG) that specifies the legitimate
execution paths of a program. Any execution behaviour that does not exist in CFG is
considered to be incorrect.

Dynamic properties can make up for the deficiency of static properties, but they are harder to
attest. When implementing an attestation protocol for dynamic properties, the way to capture
and represent information plays an important role. Unlike static properties, capturing dynamic
properties always incur a large number of recorded events, especially for complex software
with long running times. To enable efficient verification, we need to carefully select dynamic
properties based on the adversary model, and astutely design the representation form of
captured data. Besides, TOCTOU attacks may also compromise the attestation of dynamic
properties. In other word, an attacker deliberately chooses to perform malicious operations
between two attestations.

Based on the state-of-art runtime attestation schemes and use case scenarios in context of
ASSURED, we focus on the following dynamic properties, which enable the supply chain
ecosystem protected by ASSURED to mitigate various attacks modifying the control flow and
data flow of program, including code injection attacks, sensitive data extraction, code reuse
attacks, non-control data attacks, as well as malicious software attacks.

Control flow information (CFI) is a dynamic property widely used in various attestation and
detection techniques that aim to mitigate runtime attacks, such as runtime code injection
attacks and code reuse attacks. Control flow information contains the addresses of code
sections that are executed during runtime. If an attacker exploits the vulnerability to execute
malicious payloads, either by executing injected code or by reusing existing code, the action
will be recorded in the control flow report and give the verifier the chance to discover the attack.
Usually, control flow information is represented in the form of a list of indirect branches, e.g.,
function calls, function return addresses, indirect jumps, whose destination addresses are
calculated during runtime. However, as the size of program increases, the size of the control
flow log increases dramatically, which poses a challenge on how to properly represent the
control flow information and complicates the validation process. An attestation scheme can
tackle this issue by restricting the size of program to be attested, or by using hashes to
decrease the size of control flow log. Another option is to enforce certain policies, such as a
CFI policy, on prover device and only report to verifier whether all control flow branches comply
the CFI policy.

Data flow information (DFI) tracks the data stream within a program, including variable
definitions, usages, and data dependencies between instructions and variables. For instance,
data flow reveals whether the initial value of a variable originates from an untrusted source,
and how a malicious input taints other instructions or variables. With the aid of data flow
information, the attestation scheme may be able to detect non-control-data attacks that corrupt
memory access operation by loading and storing instructions, without causing any unintended
anomalies in the control flow [97]. Data flow information can be directly recorded and reported
to verifier, for instance, in form of a list of memory access instructions, or checked on the prover
side and only report the check result to verifier.

The correctness of program execution depends on multiple factors, such as the binary code,
input data, relevant executables, and data objects [98]. Report containing relevant information

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 50 of 87

can increase the chances of discovering runtime attacks. In context of ASSURED, we mainly
consider the following relevant properties: code and data measurement during runtime
aiming at disclosing runtime injecting attacks, configuration files fed to attested programs
during runtime, data exchanges with other entities such as interactive input during runtime,
as well as system-level events such as the device’s software update history and the
occurrence of system reboots.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 51 of 87

5 APPLICATION USE CASES

The aim of this section is to create the vocabulary of the system validation properties that need
to be considered during attestation in the context of the envisioned use cases so as to be able
to provide the necessary security claims. The set of validation properties that represents the
trust status of system has been documented in Section 4.1, and will serve as a reference.
Based on this, we elaborate on the instantiation of the four envisioned use cases of ASSURED
and we showcase how the systems of these use cases will be protected against attacks by
attesting configuration and execution properties. This output will help the design and
implementation of ASSURED attestation schemes in D3.1 [44], as we figure out the
adversary types, what kind of properties need to be attested to ensure the operational and
security posture of supply chain ecosystem, and what kind of attestation schemes are
necessary for the ASSURED framework. In addition, ASSURED attestation schemes need to
be integrated into the use case demonstrators. This section will form the basis for the
integration process.

In what follows, we apply the models defined in previous sections to the four use cases of
ASSURED in order to identify the crucial services and attack scenarios that are most likely to
have a severe impact on the trustworthiness of the system. Table 2, Table 4, Table 6 and Table
8 elaborate on the most critical attack scenarios for the four use cases, including details
regarding the execution of these attacks, the affected use case components and services, the
impact of each attack, and what type of attestation scheme can be used to mitigate each attack.
In this direction, each attack scenario is further analyzed, by outlining the properties that are
affected by each kind of attack, providing concrete descriptions of the properties in the context
of each use case, and information on how to attest those properties. This is documented in
Table 3, Table 5, Table 7, and Table 9.

5.1 SAFE HUMAN ROBOT INTERACTION (HRI) IN AUTOMATED
ASSEMBLY LINES

The “Smart Manufacturing” Demonstrator located in Bremen, Germany, provides an
infrastructure for Human Robot Interaction. The demonstrator for this use case is located in
the demonstrator hall within the premises of BIBA and consists of three major components:

• Ultra-Wide Band Wireless Location System

• Industrial Robotic Arms

• IoTGateway

Figure 12 illustrates the major components that are deployed in the Smart Manufacturing
scenario illustrating Human Robot Interaction. The Ultra-Wide Band Wireless Location System
transfers the location information collected by the wireless tags to an MQTT broker that runs
on a dedicated hardware, referred to as the Data Aggregator. The Robotic Arms are connected
and controlled by Programmable Logic Controllers (PLC) over the PROFINET network and
can only be accessed by an OPC-UA Server running on the Industrial PC. The IoTGateway is
a flexible edge device that exists on the same network as that of the Industrial PC, and acquires
live data from both the Ultra-Wide band wireless location system as well as the robotic arm
system. The core function of the IoTGateway is to process the collected data with collision
detection algorithms to avoid the collision between moving personnel or human workers, and
a robotic arm located in the workspace. Thus, the operational assurance of IoTGateway plays
an important role in the physical safety of the personnel in the context of the smart
manufacturing use case.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 52 of 87

IoTGateway consists of distinct micro-services in the form of containerized software with
dedicated software clients. We refer to the services needed to control the OT (Operations
Technology) part as South-Bound services, which may include the services that control the
movement of the robotic arms. Moreover, the IoTGateway offers North-Bound services for
communication with private and public clouds, which enable access from external
stakeholders. Note that IoTGateway supports secure communication channels, such as TLS
channels, with South-Bound and North-Bound services.

FIGURE 12: MAJOR COMPONENTS FOR SMART MANUFACTURING

5.1.1 Protection Goals and Attack Settings

The aforementioned system components contain a wide variety of services. An unidentified
vulnerability can be exploited by an attacker in various ways, which may lead to severe impact
on the integrity of the system. Figure 13 depicts the attack graph tree for the smart
manufacturing scenario, which contains various potential adversaries.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 53 of 87

Software Attacks target any edge component of the system or network infrastructure that is
able to execute code to control or collect information from connected sensors, actuators or
other cyber-physical systems through dedicated APIs or network protocols, such as MQTT,
OPC-UA, CoAP etc. In the smart manufacturing case, the IoTGateway plays a significant role
in the collection of data, as well as in the execution of custom algorithms that are necessary
for processing decisions made by applications at the edge level, such as sending control
signals to the Robotic Arms. Code Injection adversaries aim to disrupt the normal execution
of such algorithms and data collection firmware by injecting malicious code on the IoTGateway
and causing safety hazards for personnel working in the workspace. Similarly, an adversary
may inject malicious code into the data acquisition program to provide false information to the
system, leading to false recognition of the control algorithms and the disruption of data integrity
of the workspace. In case code injection is prohibited by some security features like DEP, the
attacker can manipulate the control flow of collision detection and data acquisition programs
and produce malicious behavior, by changing the execution order of the existing legitimate
code loaded on the device’s memory. One group of software attacks is key extraction, where
an attacker exploits memory vulnerabilities to extract secret keys from edge devices, such as
TLS keys.

Software Update Attacks involve tricking the system administrator into installing a malicious
firmware update, or forcing an automated process to do so, in order to disrupt the Operations
Technology part of the workspace. This may cause large downtimes, malfunctions in the
robotic arms, or replacement of the services running on the IoTGateway with malicious code.
One common method to execute such an attack would be to gain access to the IoTGateway
and adapt the configuration of running micro-services on them. A third-party vendor may
provide a malicious firmware update as well.

Network Attacks are commonly categorized into passive and active attacks. The former
category refers to an attacker who passively screens and monitors the network data, which is
performed by the Ultra-Wide Band wireless tags in the workspace. An external adversary
however requires the introduction of a device into the physical workspace that can listen to
network packets by eavesdropping on the network channels, as well as spoofing a device on
the wireless network to inject false data on the UWB location system. The latter category refers
to attackers who actively alter network communication, and can perform DoS attacks, spread
malware over connected devices, gain access to secure communication channel with
compromised keys, and perform network attacks against underlined TPM.

Physical Attacks require an adversary to have knowledge of the UWB location system and
can introduce an UWB tag that can inject malicious data into the system or can extract a
device’s key from the tags. Common physical attacks include side channel attacks, memory
interposing attacks, and hardware glitch attacks. Comparing with software attacks and
network attacks, physical attacks are much more difficult to perform.

Among them, the most critical attack scenarios related to the smart manufacturing use case
are listed in Table 2. Besides a general description of the attack scenario, we also state the
components and services affected by attacks, their impact, and the protection goals we want
to achieve in the context of ASSURED.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 54 of 87

FIGURE 13: ATTACK TREE GRAPH FOR SMART MANUFACTURING USE CASE

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 55 of 87

TABLE 2: SMART MANUFACTURING CRITICAL ATTACK SCENARIOS

Attack
Scenario

Description Criticality
Counter-
measure

Key extraction

Scenario: This attack targets the IoTGateway or edge
components that have access to secret key material
used for setting up secure communication with other
entities. The attacker performs memory extraction to
acquire the cryptographic key material exposed during
the runtime of programs performing cryptographic
operations.

Impact: Compromised backward and forward
confidentiality of exchanged data.

Protection Goal: cryptographic key material can only
be accessed by authorized partners and only in
predefined ways.

High

Runtime
attestation when
accessing secret
key material.

Code Injection

Scenario: This attack targets the IoTGateway or edge
components that are connected to the cyber physical
infrastructure such as Robotic Arms, PLCs controlling
these arms, etc. A malicious code injection can cause
downtime in the OT (Operations Technology) due to
unauthorized calls to the CPS infrastructure and data
manipulation causing a lapse in data security and
personnel safety within the workspace environment.

Impact: Compromised personnel safety, as well as
production downtime, data security and integrity.

Protection Goal: Avoid unauthorized code injection
during runtime on edge components.

High

Static attestation
when executing a
micro-service
running within a
container e.g. OCI
compliant
container.

Control-flow

Scenario: This attack targets the IoTGateway or edge
components that run specific software services related
to control algorithms or data processing and accept user
input during runtime. Control-flow manipulation can
cause malicious operations in the OT (Operations
Technology) and data manipulation causing a lapse in
data security and personnel safety within the workspace
environment.

Impact: Unwanted operational behaviour of edge
devices, compromised personnel and data integrity.

Protection Goal: Abnormal control flow behaviour
should be detected, and new protection policies should
be deployed.

High

Runtime
attestation for
verifying control
flow integrity.

Malicious
Updates

Scenario: This attack targets the IoTGateway or edge
components that run specific software services related
to control algorithms or data processing that is required
for decision making and signal control to CPSs. Any
unverified or unauthorized software updates on the
gateway can lead to downtimes or hazards to personnel
safety within the workspace in which the IoTGateway is
deployed.

Impact: Compromise in personnel safety as well as
production downtimes as well as ransomware causing
lapse in system integrity as well as safety hazards.

High

Static attestation
when performing
updates on the
Gateway for
verifying binary
signature, and
runtime
attestation for
avoiding changes
to control-flow
logic.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 56 of 87

Protection Goal: Software updates need to be verified
and deployed only upon proper authorization to the edge
components in the workspace.

5.1.2 Model of Use-cases Properties

ASSURED offers multiple attestation schemes to attest various static and dynamic properties.
The key is to select the appropriate properties according to the attack tree graph presented in
the previous section. Table 3 documents the properties to be validated in the context of the
smart manufacturing use case.

TABLE 3: MAPPING OF VALIDATION PROPERTIES FOR SMART MANUFACTURING USE CASE

Attack
Scenario

Target
Systems

Processes
ASSURED

Security Enabler
Validation
Property

Key
extraction
(Runtime)

IoTGateway Key establishment Static Properties

Static and dynamically
loaded binaries
responsible for secure
communication and
encryption of data. For
example, X.509 TLS
private key certificates
on IoTGateway /
special Access Tokens

Control-flow
(Runtime)

IoTGateway
Collision Avoidance and
Prediction Algorithm

Dynamic Properties
Control flow branch
information within the
container

Code
Injection
(Runtime)

IoTGateway

Micro-Services:

• Robotic Motion
Tracking

• Personnel
Location

• Collision
Avoidance and
Prediction
Algorithm

Static and Dynamic
Properties

Configuration Files for
each Micro-Service

Changes to static code
within a micro-service
container

Changes to Data Flow
exchange with other
micro-services

Malicious
Updates

IoTGateway

Micro-Services:

• Robotic Motion
Tracking

• Personnel
Location

• Collision
Avoidance and
Prediction
Algorithm

Static and Dynamic
Properties

Configuration Files for
each Micro-Service

Libraries / Dependency
changes in the micro-
services during
updates

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 57 of 87

5.2 SECURE COLLABORATION OF “PLATFORMS-OF-PLATFORMS”
FOR ENHANCED PUBLIC SAFETY

The Athens testbed focuses on the topic of public safety and the protection of related city
systems. Hence, a city operation centre is connected with several computational components
residing either in the back-end infrastructure or at the edges of the network in order to offer
public safety services. The infrastructure consists of a wide variety of heterogenous devices
including, edge-devices, gateways, storage, and network infrastructure. The edge devices are
crucial for meeting the operational goals of the use case as the system includes surveillance
cameras and sensors that generate data streams of video and sensory data respectively.

As can be seen in Figure 14, the public safety ecosystem consists of the following Cyber
Physical System of Systems:

• Edge devices located in strategic positions for the protection of the Serafio complex,
and more specifically:

o IP surveillance cameras
o Smoke detection sensors
o PLCs for controlling the surveillance systems and processes.

• The back-end Information and Communication Technology (ICT) system and
cloud-based infrastructure which includes the networking components and
computational resources to support the operations centre.

The edge devices communicate with the ICT infrastructure via secure communication
channels. The secure communication is achieved based on the key establishment service that
runs both on the edge devices and the back-end systems. In fact, this service runs first in order
to securely instantiate the overall deployment and then proceed with the core safety critical
operations. The operation of the IP surveillance cameras generates video data streams, from
the edges of the network back to the ICT and cloud-based backend, in order to provide the
necessary input to operation center and feed the object detection and face recognition
processes. The collected data and the results of the video stream processing are meant to be
shared with external stakeholders in the context of the data value chains of the ASSURED
project.

In addition, the smoke detection sensors are critical for the safety of the Serafio complex.
Specifically, these sensors transmit signals to the backend ICT infrastructure periodically to
detect a fire and provide the necessary indications to the decision makers of the operation
center to trigger the fire alarm and the established safety procedures (e.g., evacuation plans).

The ICT infrastructure is based on network components, such as IoT gateways and network
switches, and servers that support the secure communication and the processing on the data
streams, respectively. The network components support the bidirectional secure
communication between the edge devices and the back-end systems. Specifically, the
generated data streams are transmitted by the edge devices towards the back-end systems
for further processing, while device management processes, such as software/firmware
updates, device (re) configuration and commands, are pushed through the network to the edge
devices.

Overall, in this context, the aforementioned Cyber Physical System of Systems of the public
safety use case work in synergy to offer the following services that need to be protected:

 Video Data Stream Generation;

 Sensor Data Generation;

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 58 of 87

FIGURE 14: PUBLIC SAFETY ECOSYSTEM

• Key Establishment (Cryptographic key management for secure communication)

• Remote asset management

• Face Recognition and Face Detection

• Object detection

• Fire detection and Smoke/Gas detection

The aforementioned services engage a wide variety of devices spanning from the edge to the
cloud-enabled backend, and thus, posing a significant challenge of safeguarding the entirety
of the safety-critical components of the system. As it will be documented in the following
sections, these devices and the offered services can be targeted by adversaries in various
ways. Figure 14 intuitively demonstrates a key exfiltration attack that can take place against
the PLCs of the infrastructure, in alignment with the threat landscape that will be presented in
the next section based on recent research endeavours in the field [69]. The goal of ASSURED
is to provide a set of protection mechanisms that can guarantee the operational assurance of
these devices and processes.

5.2.1 Protection Goals and Attack Settings

Attacks and types of malicious actions targeting the city system is depicted in the attack graph
tree figure for the public safety scenarios and analysed below.

Software attacks target any edge component of the system and network infrastructure. The
software-based attacks are applicable to devices and components of the system running
backend codes, such as routers, gateways, servers, cameras, sensors etc. One group of
software attacks refers to key extraction when an attacker exploits potential vulnerabilities on
the memory of systems in order to extract secret keys from the edge devices, or additionally,
to get access to edge components for accessing data related to memory.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 59 of 87

FIGURE 15: ATTACK TREE GRAPH FOR PUBLIC SAFETY USE CASE

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 60 of 87

A code injection adversary aims to inject malware on the edge devices or the network
infrastructure, compromises PLCs attached to the municipality cameras and/or sensors, in
order to target the data integrity or manipulate the ID of an edge device. Finally, the attacks
exploiting the control flow of DAEM’s use case configuration either changes the control flow
execution of legitimate software or manages to compromise the data of a sensor/camera/other
edge device (e.g., Phishing on the Raspberry gateway).

In the context of remote asset Management, software update attacks may target any edge
component of the system and network infrastructure similarly to software attacks. This
category includes adversaries on malicious updates and unauthorized accesses that attack
the municipal system as:

• A third-party vendor that provides a malicious firmware update
• An attacker that replaces legitimate software updates with malicious code
• An unauthorized user that performs software updates
• An attacker that monitors the proprietary data of the distributed updates

In addition, in the context of software update attacks, adversaries may target the timeliness
of updates & commands. Such an adversary can potentially target the public safety domain
by monitoring of the communication channels in order to attack the response time of devices
for verifying the correct update distribution and execution. In addition, she can also insert
previous software updates as new ones that can potentially affect the type of output from the
sensors/cameras and, thus, impact the decision-making process.

Network attacks can also target any edge component of the system and network
infrastructure. Those attacks can be categorized into passive and active attacks. The
former category considers attackers that passively monitor the network by eavesdropping and
sniffing network packets exchanged between the edge devices and the back-end systems.
The latter category considers active attackers who can launch DoS attacks against devices
and services, spread malware to the network devices, evade the secure communication by
compromising cryptographic keys, and even compromise edge devices to interrupt the
communication with the underlined TPM.

Data management attacks mainly target the systems of external stakeholders (LEAs, police
etc.), data storage facilities and edge devices. An attacker could impersonate the behavior of
a trusted actor or component of the city system, as a man-in-the-middle attack, in two potential
ways:

• By manipulating memory-related vulnerabilities, at the edge devices, and getting
access to the host TPM-based Blockchain wallet. This can lead to unauthorized reads
on the recorded data.

• By exploiting stored credentials from legitimate External Stakeholders in order to get
privileged access to the Data Storage.

The second kind of data management attack refers to denial of service. An attacker (outsider)
tries to perform too many access requests to the Blockchain infrastructure to clog the system,
so that it is not able to handle legitimate requests.

When it comes to Physical Attacks, those can be placed into three distinct categories.
Physical access to the devices is required in all these categories, therefore they are outside
the scope of ASSURED. However, for completeness purposes, we shortly elaborate on them.
More specifically, Memory interposing attacks can be performed by an adversary by
snooping or controlling the accesses to the main memory of edge devices. In addition,

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 61 of 87

Hardware Glitch Attacks can be performed to interfere with the edge devices by glitching the
voltage. Side channel attacks can be also performed, and an attacker could read confidential
data or extracts device’s keys through differential power analysis.

TABLE 4: PUBLIC SAFETY CRITICAL ATTACK SCENARIOS

Attack
Scenario

Description Criticality
Counter-
measure

Key Extraction
(Runtime)

Scenario: This attack targets the edge devices (e.g.,
cameras, smoke detection sensors) and their attached
PLCs that are responsible for securely managing secrete
key material used for the subsequent communication of
the extracted data to the back-end Decision Support
Engine. The attacker, by exploiting memory-related
vulnerabilities (e.g., buffer overflow), snoops on the
publicly accessible data structures (i.e., stack) for
extracting secret keys prior to their usage.

Impact: Compromise backward and forward secrecy
and data confidentiality of exchanged data.

Protection Goal: Compromise of an edge device should
not allow the exploitation and/or leakage of any secret
material used for the confidentiality and integrity of
transmitted video and sensor data

High

Runtime
Attestation for
verifying the
integrity of
loaded binaries

Code Injection
(Runtime)

Scenario: this attack exploits a software vulnerability
and injects a malware on the edge devices or the
network infrastructure.

Impact: target data integrity or manipulate the ID of an
edge device.

Protection Goal: Compromising an edge device should
not enable an attacker to access the core code
and manipulate its ID.

High

Runtime
Attestation for
verifying control
flow integrity of
safety critical
services on the
edge devices.

Control-flow

Scenario: This attack targets the edge devices (e.g.,
cameras, smoke detection sensors) and their attached
PLCs by changing the control flow execution of the
legitimate software that runs on them. The attacker
performs code reuse attack on an edge-device to bypass
e.g., DEP and change the execution behaviour of
legitimate software.

Impact: Compromise the data of a sensor/camera/other
edge device and divert the operational behaviour of
safety critical application.

Protection Goal: Compromise of an edge device and
violation of its control flow integrity should be detected,
and new protection policies must be deployed.

High

Runtime
Attestation for
verifying control
flow integrity of
safety critical
services on the
edge devices.

Malicious
Updates

Scenario: An attacker replaces legitimate software
updates with malicious code

Impact: the attacker can intervene in the operation
system functionality by deploying a malware in the
format of a system or component operational update
(e.g., a camera function)

Protection Goal: Prevent remote access to assets of the
system by external attackers

High

Static attestation
for the
verification of the
correct (or
expected)
signature of the
application.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 62 of 87

Unauthorised
Access

Scenario: In the context of this attack, the adversary
aims to get unauthorised access to the software update
processes. The attacker is able to interfere with the
software updates and get access to the parameter
updates that might need to be circulated to the edge
devices, e.g., periodicity of smoke data measurement
collection, speed of angle change of the camera, etc.
Thus, the attacker monitors the proprietary data of the
distributed updates.

Impact: Manipulation of the software update process
which enables the attacker to compromise the
operational behaviour of safety critical applications and
modify the mode of operation of edge devices.

Protection Goal: Establishment of secure
communication between edge devices and the back-end
systems in order to avoid attackers intervene in the
software and parameters update processes. Provide
guarantees on the integrity of binaries and configurations
of edge devices.

High

Runtime
attestation and
configuration
integrity
verification of the
updated binaries

Passive
Network
Attacks

Scenario: In the context of this attack the adversary is
positioned in the middle of the communication channel
of the edge devices and the back-end systems to
perform eavesdropping and sniffing of the exchanged
network packets. The attacker can take advantage of
weak cryptographic primitives or the absence of identity
authentication processes in the communication
processes.

Impact: Passive network attacks can be the first stage
of more sophisticated attacks. Thus, the acquisition of
critical information exchanged between edge devices
and back-end systems can be useful for the attacker to
compromise more safety critical applications.

Protection Goal: Establishment of secure and
authenticated communication between edge devices
and the back-end systems in order to avoid attackers to
be positioned in the middle of the communicating
entities.

High

Secure
communication
channel
establishment
based on the use
of HW-based
keys managed by
the ASSURED
TPM-enabled
wallet

Active
Network
Attacks

Scenario: In the context of this active network attacks
the adversary can launch several attack variations with
high impact. More specifically, an attacker can take
advantage of compromised keys and decrypt the
communication between the edge devices and the back-
end systems. In addition, network attacks can be
launched against the TPM installed on a device by
exploiting the TPM Command Transmission Interface
(TCTI) and, thus, interfering with, or disrupting, the
communication between the host device and the TPM.

Impact: Active network attacks can lead to manipulation
or disruption of the communication between core edge
devices and the back end-systems or between the host
devices and the TPM that acts as the trust anchor of the
overall deployment. Thus, active attacks can have great
impact on the confidentiality of the communications and
can threaten the safety critical services that capitalise on
the trust qualities of the TPM.

Protection Goal: Guarantee the secrecy of the
cryptographic keys used to establish secure and

High

In case of Key
Compromise:
Strong
revocation of the
cryptographic
keys and
credentials
guaranteed by
the ASSURED
TPM-enabled
wallet.

In case of
compromised
host device: Use
of policies- and
sessions-related
core TPM
services to
safeguard the
communication

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 63 of 87

authenticated communications based on TPM
authorisation mechanisms. Ensure authorised and
regulated interaction of safety critical processes with the
TPM based on the principle of minimising the trusted
computing base and adopting minimal trust
assumptions.

between the host
and the TPM.

Impersonation
in data
management

Scenario: In the context of impersonation in the data
management process an attacker manipulates memory-
related vulnerabilities, at the edge devices, for being able
to get access to the host TPM-based Blockchain wallet
to perform unauthorized reads on the recorded data. In
addition, an attacker may exploit any stored credentials
from legitimate External Stakeholders to get privileged
access to the Data Storage.

Impact: Such attacks can have great impact on the
confidentiality of information stored and managed
throughout the data value chains formed in the context
of ASSURED. The malicious activity of the attacker can
lead to data leaks of sensitive and operational data from
the underlined infrastructures.

Protection Goal: Guarantee operational assurance the
TPM-based Blockchain wallet and ensure that
unauthorised read of recorded data can detected though
the use of control flow attestation.

High

Runtime
Attestation for
verifying control
flow integrity of
the TPM-based
wallet
processes.

5.2.2 Model of Use-cases Properties

In the previous section, we documented the attack scenarios which are relevant to the public
safety use case by giving details on their impact, and the conditions that need to be met for
these attacks to be performed in this use case. Using this as a baseline, this section offers a
mapping among the identified attack scenarios with the systems and processes of the
demonstrator by highlighting the properties that need to be validated by the ASSURED
defensive mechanisms to meet the protection goals.

The public safety use case processes that should be protected are focused on the generation
and sharing of privacy sensitive and safety critical data through the ASSURED supply chain.
In this context, a core offering of the ASSURED framework is the attestation and verification
of validation properties that has been defined in Section 4.1. Thus, the table below documents
the properties to be validated against the most devastating identified attacks.

TABLE 5: MAPPING OF VALIDATION PROPERTIES FOR PUBLIC SAFETY USE CASE

Attack
Scenario

Target
Systems

Processes
ASSURED
Security
Enabler

Validation
Property

Key
Extraction
(Runtime)

Edge
devices
(e.g.,
cameras,
smoke
detection
sensors)
and PLCs

• Key establishment Static Properties

Static and
dynamically loaded
binaries responsible
for the establishment
of the secure
communication. For
instance, the binary
for generating the
necassary
algorithmic material

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 64 of 87

and prameters for the
generation of ECC-
based keys in the
context of Direct
Anonymous
Attestation leveraged
for privacy protection.
(See D4.3 [99])

Code Injection
(Runtime)

Edge
devices,
Network
components
(e.g., IoT
Gateway),
back-end
systems

• Video data stream
generation

• Sensor data
generation

• Key establishment

• Remote asset
management

• Face
detection/recognition

• Object detection

• Face Recognition
and Face Detection

• Object detection

• Fire detection and
Smoke/Gas
detection

Static and Dynamic
Properties

Attestation of
statically and
dynamically loaded
binaries used to
interact with core OS
functionalities.

Control flow
information of all
processes generating
the services’ data.

Control-flow

Edge
devices,
Network
components
(e.g., IoT
Gateway),
back-end
systems

• Video data stream
generation

• Sensor data
generation

• Key establishment

• Remote asset
management

• Face
detection/recognition

• Object detection

• Fire detection and
Smoke/Gas
detection

Dynamic Properties

Control flow
information of all
processes generating
the safety critical
services’ data.

Malicious
Updates

Edge
devices

• Video data stream
generation

• Sensory data
generation

• Key establishment

Static Properties

Attestation of
statically and
dynamically loaded
binaries being
updated in the
context of the safety
critical services.

Unauthorised
Access

Edge
devices

• Video data stream
generation

• Sensory data
generation

Static properties

Attestation of
statically and
dynamically loaded
binaries in the
context of sofware
upades that indicate
the configuration
paramaters of the
data generation
processes.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 65 of 87

Passive
Network
Attacks

Edge
devices,
Network
components
(e.g., IoT
Gateway),
back-end
systems

• Key establishment

• Remote asset
management

Static properties

Attestation of
statically and
dynamically loaded
binaries and the
respecitve
configuration of the
responsible banaries
for establishing the
secure
communication
between edge
devices and back-
end systems.

Active
Network
Attacks

Edge
devices,
Network
components
(e.g., IoT
Gateway),
back-end
systems

• Key establishment

• Remote asset
management

Static and Dynamic
properties

Attestation of
statically and
dynamically loaded
binaries that
undertake credentials
revocation process.

Control flow
information of the
critical processes
communicating with
the TPM of a host
device to detect
control flow
deviations.

Impersonation
in data
management

Edge
devices

• Remote asset
management

Static and Dynamic
properties

Statically and
dynamically loaded
binaries of the TPM-
based wallet.

Control flow
information of the
TPM-based wallet
service.

5.3 SECURE AND SAFE AIRCRAFT UPGRADABILITY &
MAINTENANCE

The smart aerospace is a complex SoS-enabled ecosystem which consists of many onboard
cyber-physical systems, such as Flight Management Systems (FMS), Environment Control
Systems (ECS), Cockpit Flight Instruments (CFI), and on-board Wi-Fi systems. A secure
server router (SSR) is a real-time embedded device that enables the most important aircraft
functionalities, e.g., on- and off-board communications. SSR collects critical data of the aircraft
while in the air from the on-board edge devices and transmits the data collected to a Ground
Station Server (GSS) when on the ground. To ensure the security of a smart aerospace, it is
crucial to deploy a safe and secure data transfer between the SSR and the ground station
server and perform secure remote updates on the SSR.

Figure 16 depicts the core components and services in smart aerospace use case. Currently
the SSR communicates with the GSS through a cabled connection, specifically Ethernet
connection, when the airplane is on the ground. SSR collects the sensor data while flying, and
then transfers the data to the GSS through the cabled connection. Furthermore, as previously
mentioned, the SSR offers several services on the airplane: separate Wi-Fi connections to the

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 66 of 87

crew members and to the passengers enabled by cellular connections, cabled data collection
and storage from the sensors and an ad-hoc access control module to be used when
performing physical software updates. SSR runs over a proprietary implementation of Security-
Enhanced Linux-based Operating System (OS). The GSS instead can be depicted as a simple
data server, based on either a Linux or Windows OS, which stores the data received from the
SSR.

FIGURE 16 SMART AEROSPACE CORE COMPONENTS AND SERVICES

5.3.1 Protection Goals and Attack Settings

In aviation and aerospace industry, the trustworthiness on safety-critical components has high
priority, otherwise countless lives could be lost. This is also the protection goal to achieve in
context of smart aerospace, namely one can confidently say that all the activities performed
by the system are justifiably and confidently trusted. The definition of trustworthiness on safety-
critical components needs to include not only safety but also security. Therefore, ASSURED
is needed to comply with the up-to-date security protection mechanisms of the aerospace
systems.

The SSR is primarily used as an Electronic Flight Bag (EFB) interface and communication
unit to enable pilots and crew to communicate over wireless interfaces. When deployed on the
aircraft, the SSR wirelessly connects any EFB device, such as a pilot mobile device, to
exchange data with other flight deck devices. The information exchanged varies widely by
aircraft, airline, and EFB application, but EFB information may include pre-flight checklists,
weather data, aeronautical charts, as well flight operation quality assurance data.
Consequently, security of the router and data integrity is paramount. A successful compromise
of the SSR software could potentially drive pilot confusion by providing inaccurate aeronautical
data to the pilot. Moreover, given the SSR’s ability to exchange flight operation quality
assurance data, a compromise of the SSR would allow the attacker to potentially corrupt
maintenance logs. While several advanced protection techniques are put in place around the
SSR, the ASSURED framework aims to extend these conventional security measures with
advanced runtime protection for additional assurance.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 67 of 87

The smart aerospace ecosystem can be vulnerable to different attack scenarios, shown in the
attack tree in Figure 17. While the attack tree graph provides a complete view of the potential
attack scenarios in the smart aerospace use case, the most crucial components of the
ecosystem are the SSR, the GSS and the communication channel between them. This is due
to the physical restrictions and composition of the ecosystem. For example, if we evaluate the
network attacks centred on the SSR, the communication with the GSS is more vulnerable than
the one with the sensors. On the one hand, the communication with GSS is performed through
a wireless connection which does not require physical proximity for the attacker to either the
SSR or the GSS, allowing him to perform physical-undetected wireless attacks on the
connection. On the other hand, the communication with sensors requires the attacker to be
physical connected to either the SSR or the sensors since these communications are fully
cabled and not easily accessible to non-technical personnel.

If we consider the communication established between the SSR and GSS when performing
either the secure data transfer or the secure remote software update, the SSR and GSS must
first establish a wireless communication, attest each other’s authenticity, and control the GSS
authorization to ensure the confidentiality of the data transferred. If a software update is pushed
to the SSR, starting from the same communication security requirements mentioned for the
data transfer scenario, the GSS authorization must be verified and the integrity of the software
must be checked, through static attestation at first and through dynamic attestation during run-
time.

Starting from this nominal baseline, we identify several critical attacks that may severely affect
the smart aerospace ecosystem, including malicious updates, unauthorized access, and
passive network attacks.

Malicious update attacks target the SSR and may affect a wide variety of services that
require updates or patches frequently. The attacker can use various approaches to
masquerade malicious code as legitimate software updates, either firmware updates or
updates of third-party software. This would open vulnerabilities on the SSR, allowing the
attacker to gain control over the device, which would lead in having the whole ecosystem open
to the attacker. Unauthorized access attacks aim at monitoring, accessing, and manipulating
the proprietary data of the distributed software updates. This could lead to incorrect analysis
of the data representing the status of the aircraft, followed by future incorrect mitigations which
would be forced due to the data being compromised by the attacker when the sensors’ data
are transferred from the SSR. Finally, passive network attacks target the data exchanged
between the SSR and the GSS. The attacker does not actively tamper the data, but just read
and analyse the data in order to gain proprietary information on the overall system, on both
software and hardware sides.

Besides the aforementioned critical attacks, there are other type of attacks that make less
impact or are hard to be carried out. we will shortly introduce other potential attacks for purpose
of completeness. Software attacks targeting SSR include code injection attacks and control
flow manipulation attacks that inject malicious code or reuse existing code to perform
malicious actions or compromise SSR’s data. As a prerequisite, the attacker is able to send
the exploit payload to the victim’s applications along with the input data. One group of software
attacks, referred to as key extraction, exploits memory vulnerabilities to extract secret keys
from the devices may affect the SSR and GSS. In addition, active network attacks target the
communication channel between the SSR and GSS. The attacker can launch DoS attacks,
spread malware to the network devices, break the communication with compromised keys,
and interrupt the network communication between TPMs. Finally, in the context of the smart
aerospace use case, physical attacks require physical proximity for the attacker to the SSR,
which renders this type of attacks unrealistic, such as side channel attacks, memory
interposing, and high glitch attacks.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 68 of 87

FIGURE 17 SMART AEROSPACE ATTACK TREE

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 69 of 87

A summary of highly critical attacks for the smart aerospace use case is presented in Table 6.

TABLE 6: SMART AEROSPACE CRITICAL ATTACK SCENARIOS

Attack
Scenario

Description Criticality Counter-measure

Malicious
updates

Scenario: This attack targets the SSR and
services running on it. An attacker replaces
legitimate software updates with malicious
code.

Impact: Software integrity compromised,
and system open to vulnerabilities.

Protection Goal: Only legitimate software
updates from known sources can be
installed in the SSR.

High

Static attestation for verifying
binary signature

Authentic and confidential
network communication

Unauthorized
access

Scenario: This attack targets to the
software update processes of SSR
firmware and applications. The attacker is
able to interfere with the update processes
and access to the proprietary data of the
distributed updates.

Impact: Manipulation of proprietary data
enables the attacker to compromise the
operational behaviour of safety-critical
applications and modify the mode of
operations of SSR.

Protection Goal: Confidentiality and
integrity of software update processes.

High
Static attestation and runtime
attestation for verifying the
update processes.

Passive
network
attacks

Scenario: An attacker eavesdrops and
sniffs the network packets exchanged
between SSR and GSS. The attacker can
take advantage of weak cryptographic
primitives or the absence of identify
authentication processes.

Impact: Data confidentiality compromised.
Passive network attacks can be the first
stage of many other sophisticated attacks.

Protection Goal: Retain the confidentiality
of network data shared between SSR and
GSS.

High

Secure communication channel
established based on the use of
HW-based key managed by
ASSURED TPM-enabled wallet

Control flow

Scenario: An attacker injects malicious
code to the device altering the software
flow of commands expected to be
executed. Data compromising the control
flow execution could be instructions
indicating faults or operational modes of
the devices where no protection is present.

Impact: Device inner-data captured and
compromised. If additional commands can
be injected to the device than more severe

High

Runtime Attestation for
verifying control flow integrity of
safety critical services on the
edge devices.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 70 of 87

attacks can occur (unauthorised privilege
editing)

Protection Goal: Code injection on the
device and violation of its control flow
integrity should be detected.

Code
injection

Scenario: An attacker injects malicious
code at runtime or through infiltrating to
firmware updates of the device

Impact: target data integrity or manipulate
the ID of the device.

Protection Goal: Compromising the
device should not allow an attacker to
obtain access to core code and manipulate
its ID or other core services

High

Runtime Attestation for
verifying control flow integrity of
safety critical services on the
edge devices.

5.3.2 Model of Use-cases Properties

In this section, we make the mapping among the identified attack scenarios with the
demonstrator processes by highlighting the properties needed to be validated by the
ASSURED defensive mechanisms to meet the protection goals, as shown in Table 7.

TABLE 7: MAPPING OF VALIDATION PROPERTIES FOR SMART AEROSPACE USE CASE

Attack
Scenario

Target
Systems

Processes
ASSURED
Security
Enabler

Validation
Property

Code injection SSR

OS and all related
services. All active
services should be
attested before their
execution.

Static and dynamic
properties

Binary attestation of the
new software (device
firmware) to be enforced
into the device.

Code and static data
measurements on run-
time.

Control-flow and data-
flow attestation.

Control-flow SSR

OS and all related
services. All active
services should be
attested before their
execution.

Static and dynamic
properties

Loaded libraries and
code attestation.

Code and static data
measurements on run-
time.

Control-flow and data-
flow attestation.

Malicious
updates

SSR
OS and all active
services on SSR

Static properties

Attestation of loaded
binaries and
configuration related to
software update
processes

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 71 of 87

Unauthorized
access

SSR
OS and all active
services on SSR

Static and
dynamic
properties

Attestation of loaded
binaries and
configuration related to
software update
processes

Control flow information
of the update processes

Passive network
attacks

SSR, GSS

All services responsible
for establishing secure
communication between
SSR and GSS.

Static properties

Configuration integrity
attestation.

Attestation of loaded
binaries responsible for
establishing secure
communication between
SSR and GSS.

5.4 DIGITAL SECURITY OF SMART SATELLITES

The digital security of smart satellites use case ecosystem consists of the following Cyber
Physical System of Systems, as shown in Figure 18.

1) Cubesat is a miniaturized satellite performing specific missions in space. There is
cooperation among multiple Cubesats as well.

2) The Ground Station (GS) is the central unit, which monitors, maintains, and controls
CubeSat operation.

CubeSats use KUBOS, an operating system specifically designed for CubeSat, which contains
several specific services supporting necessary functions of the CubeSat. CubeSats also run
custom software implementing the mission application and the integration with specific
hardware payloads, such as cameras and sensors. Usually, CubeSats use hardware payloads
to collect data such as telemetry data, and afterwards report the data to the Ground Station.
Then, the mission software applications need to be updated regularly.

The Ground Station however runs a commodity OS (Linux or Windows) which is configured by
an Admin and is operated by a CubeSat Operator. The Ground Station consists of the Gateway
Service implementing the communication with CubeSats, third-party applications, backend
systems (e.g., the ASSURED backend server) and other external parties (e.g. external
stakeholders). The application layer of the ground station consists of specific services
responsible for the control, monitoring, maintenance, and update of the Cubesats, such as
audit service logging necessary information, and other services supporting the visualisation,
sharing and notifications mechanisms of the system. More details can be found in Figure 18.

CubeSats communicate with the Ground Station and other CubeSats via secure channels. The
data collected by CubeSats is transmitted to ground station periodically or upon request. Apart
from the internal communication between CubeSats and the Ground Station, the data in some
cases need to be shared (from the Ground Station) with external stakeholders.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 72 of 87

FIGURE 18 SMART SATTELITE COMMUNICATION SERVICES

5.4.1 Protection Goals and Attack Settings

Potential attacks targeting the smart satellites use case are depicted in Figure 19. The
adversary's goal is to control a specific or a sub-group of CubeSats services in order to disrupt
the normal execution of a mission application, or to cause data leakage or corruption of the
data collected from the CubeSats. Given the launch process followed and the verification
checks performed, as well as the operational environment of CubeSat, which limits physical
access, the CubeSat can be assumed to be benign when firstly operating in space, and
physical attacks are precluded. But the adversary can still compromise CubeSats through
software update attacks. Specifically, the attacker uses deceptive methods such as phishing
to fool the admin or CubeSat operator to install malicious updates, either CubeSat firmware
or third-party software.

The Ground Station is a potential attack target as well. There are communication channels
between the Ground Station and CubeSat, as well as among CubeSats. Attackers may
leverage it to compromise more CubeSats after compromising the ground station first. The
ground station, running on a common Windows/Linux OS, cannot be easily formally verified
and is likely to contain exploitable vulnerabilities. An attacker can exploit a known or zero-day
vulnerability to inject code into Ground Station in order to stealthily access the confidential
data stored in Ground Station, or perform unauthorized actions such as delete anomalous logs,
or send forged commands to CubeSats. Advanced adversaries can perform runtime attacks
to manipulate the legitimate execution behaviours of critical services running in ground station,
such as services communicating with CubeSats. This kind of attacks can bypass some security
enforcement techniques like DEP. In addition, a special type of software attacks is key
extraction that targets secret key materials stored or processed in ground station, such as
TLS keys used to secure communication with CubeSats.

The aforementioned attacks belong to the category of software attacks that target software
components with vulnerabilities. The adversary can leverage software attacks to gain access
to the victim system, perform unauthorized operations such as modify the system configuration
and access to sensitive data. On this basis, the attacker can use network attacks to
compromise more edge devices. However, the network communications within the smart
satellite use case are conducted through well-configured and secure channels, such as TLS,
to ensure the data integrity, confidentiality, and authentication. DoS attacks are considered out

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 73 of 87

 FIGURE 19: ATTACK TREE GRAPH FOR SMART SATELLITES USE CASE

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 74 of 87

of the scope of ASSURED. Thus, the criticality of network attacks is evaluated as low. Network
attacks can be categorized into passive attacks like eavesdropping, and active attacks. The
latter category includes spreading malwares to the network devices, evading secure
communication by compromising cryptographic keys, and network attacks on the TPM.

In the context of the smart satellite use case, another potential attack target is the data
processed and stored in the Ground Station. Attackers can reveal sensitive data, damage the
integrity of data sent to other stakeholders, or disrupt the operation of ground station, e.g.,
generate false alarms about the system's security state. There are several available paths for
attackers to achieve this goal. Besides the software attacks mentioned above, it is possible to
perform physical attacks against the Ground Station. For instance, the attacker can perform
side channel attacks to extract confidential data, or hardware glitch attacks to interfere with
ground station by glitching the voltage. Alternatively, memory interposing attacks can snoop
into or modify the memory by installing an interposer in ground station’s DRAM. However,
based on the practical operational environment of the Ground Station, those physical attacks
are not taken into consideration, since physical security protection like access control and
surveillance is a much more effective and easy-to-deploy solution.

At the Table 8 below all attack scenarios evaluated of high impact are enlisted along with the
respective countermeasures.

TABLE 8: SMART SATELLITES CRITICAL ATTACK SCENARIOS

Attack
Scenario

Description Criticality
Counter-
measure

Key
extraction

Scenario: This attack targets the ground station that
run specific applications performing cryptographic
operations with keys, such as software services
communicating with CubeSat and external entities. The
attacker acquires timely memory extraction to exfiltrate
the cryptographic key material exposed during runtime
of those applications.

Impact: Compromise backward and forward data
confidentiality of exchanged data.

Protection Goal: cryptographic key material can only
be accessed by authorized partners and only in
predefined ways.

High

Runtime attestation
for verifying the
integrity of key
access operations

Code Injection

Scenario: The attacker exploits software vulnerabilities
and injects malicious code on the ground station. By
means of compromised ground station, the attacker can
further inject malicious code on the CubeSats.

Impact: Perform unexpected operations on ground
station and CubeSats. Compromise the data integrity
and confidentiality of ground station and CubeSats

Protection Goal: Unauthorized code should not be
executed.

High

Static attestation and
runtime attestation
before executing a
specific operation.

Runtime
attack

Scenario: This attack targets ground station services. An
attacker exploits memory corruption vulnerabilities on
ground station's services to change the legitimate control

High
Runtime attestation
for verifying control
flow integrity before

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 75 of 87

flow of those services, in order to perform unauthorized
operations and obtain unauthorized access to the
memory, and extract information such as the TLS key.
This attack helps the adversary to bypass common
security enforcement, such as DEP. By compromising
the Ground Station, the attacker can further attack
CubeSats.

Impact: Divert the operational behaviour of edge
devices, compromise data confidentiality and integrity.

Protection Goal: Abnormal control flow behaviour
should be detected, and new protection policies should
be deployed.

executing a specific
operation.

Malicious
updates

Scenario: This attack targets the ground station and
CubeSats. An attacker can fool the admin and operator
or force an automated process to install malicious
updates on ground station or CubeSats.

Impact: Compromise commands that are send to
CubeSats.

Protection Goal: Only legitimate software updates from
known sources can be installed in ground station and
CubeSats.

High

Static attestation for
verifying binary
signature before
distributing updated
version of the
mission application.

5.4.2 Model of Use-cases Properties

In the previous section we specify the most critical attack scenarios for smart satellites use
case and the relevant protection goals. This section will elaborate on how ASSURED meets
each objective by attesting and verifying specific properties. Table 9 presents the mapping
between the identified attacks and the corresponding validation properties.

TABLE 9: MAPPING OF VALIDATION PROPERTIES FOR SMART SATELLITES USE CASE

Attack
Scenario

Target
Systems

Processes
ASSURED
Security
Enabler

Validation
Property

Key extraction Ground Station
(GS).

Ground Station
software services
communicating with
CubeSats and
external entities
(during key
establishment).

Dynamic properties

Control flow information
of related processes
before proceeding with
key establishment.

Code Injection
(Runtime)

Ground Station
(GS). CubeSat

Ground Station
software services.
All services
included in a
specific operation
should be attested
before proceeding
with operation. For
example, the S/W
distribution service (at
the GS side) and File
Transfer Service (at

Static Properties
and dynamic
properties

Attestation of loaded
binaries.

Control flow information
of all processes.

Configuration files of the
services.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 76 of 87

CubeSat side) should
be attested before
proceeding with the
distribution of new
version of mission
software application.
Also core services of
CubeSats OS should
be attested (KUBOS).

Changes to static code
of the services

Changes to data flow
exchange with other
services.

Runtime Attack
Ground Station
(GS), CubeSat

Ground Station
software services.
All services
included in a
specific operation
should be attested
before proceeding
with operation. For
example, the S/W
distribution service (at
the GS side) and File
Transfer Service (at
CubeSat side) should
be attested before
proceeding with the
distribution of new
version of mission
software application.
Also core services of
CubeSats OS should
be attested (KUBOS).

Dynamic Properties

Control flow information
of all processes.

Configuration files of the
services.

Changes to static code
of the services

Changes to data flow
exchange with other
services.

Malicious
update

Ground Station
(GS), CubeSat

All Ground Station
and CubeSats
software

Static Properties

Attestation of the
integrity of software
updates.

Configuration files of the
services.

Libraries / Dependency
changes in the services
during updates

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 77 of 87

6 CONCLUSION

This final section will act as a synopsis of the deliverable and summarize its findings. The
scope of this deliverable was to set the scene for the design of the novel remote attestation
schemes [3] (e.g., Configuration Integrity Verification, Control-flow Attestation, Swarm
Attestation and Jury-based Attestation) towards the creation of trust- and privacy-aware
service graph chains. In this context, one important parameter to define is the type of
properties, of all the hardware and software assets of the SoS-enabled ecosystem, that
need to be attested for achieving the desired level of trustworthiness. Recall that one of
the key contributions of ASSURED is the definition of a framework that will allow the use of
property-based attestation to corroborate the fundamental security (and non-security)
properties of single assets and extend this to a larger SoS. Essentially, the endmost goal is to
provide the means to reason on the overall security capabilities of complex SoS based on
properties attested on the level of single components in order to assess the security of an SoS-
enabled ecosystem both during design- and run-time and enforce security policies based on
such assessments.

Towards this direction, this deliverable provided a detailed break-down of all static and run-
time system properties that, when considered for attestation, can provide verifiable evidence
on the level of assurance of a system. These include resources ranging from concrete
configuration properties to low-level behavioural execution properties covering all
phases of a device’s execution; from the trusted boot and integrity measurement of a CPS
(e.g., list of allowed binaries loaded, type of hardware present, type of firmware present, etc.)
to run-time execution (e.g., control-flow information, data-flow information, etc.) of only those
safety-critical functions that have strong integrity and operational correctness requirements.
This enables the vision of ASSURED towards employing advanced attestation schemes, for
verifying the integrity (during both design- and run-time) of the target system, but not of the
entire (untrusted) code base – which is rather impractical – but only of those properties that
have the higher footprint on the overall SoS operation and level of assurance.

This compartmentalization also led to the identification of the behavioural properties to be
attested and the modelling of the critical software components in the context of all of
the envisioned use cases which will, in turn, dictate the resources that need to be considered
for attestation when calculating the optimal set of attestation policies to be enforced [2]. This
was also based on the instantiation of an artefact-centric modelling notation for
representing all the technical operations, within a SoS-enabled ecosystem, in such a way so
that we can extract the acceptable state of all safety-critical operations. Essentially, this is
the model that can be leveraged by a System Administrator that wishes to identify all
relationships between the core assets in the target SoS so that she can then capture the
control-flow among the activities and processes running within a system and in a
hierarchical composition of systems. This provides the trusted reference values of what
is expected as a normal behaviour and against which real-time monitored states will be verified.

Overall, through this codification of trust among computing entities (that potentially are
composed of possibly insecure – heterogeneous – hardware and software components), this
deliverable puts forth a direct mapping of the system properties that need to be attested for
protecting against specific type of vulnerabilities. This information will be further processed in
the context of D2.1 [63] where a detailed threat analysis will be conveyed, in order to identify
both the attestation tasks and the resources to be attested as a detection measure against the
most prominent and impactful vulnerabilities. This, in turn, will be one of the input pipelines to
the Policy Recommendation Engine [2] in order to calculate the optimal scheduling of
attestation tasks that need to be enforced to all hardware assets towards achieving the desired
level of trustworthiness – not only for single systems as standalone components but also for
the entire composition of systems capturing all the internal relationships and trust calculations.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 78 of 87

ABBREVIATIONS

Abbreviation Description

ABAC Attribute-based Access Control

ABE Attribute Based Encryption

AK Attestation Key

API Application Programming Interface

ARP Address Resolution Protocol

ASLR Address Space layout Randomization

BFT Byzantine Fault Tolerance

BGP Byzantine Generals Problem

BPMN Business Process Modelling Notation

CA Certification Authority

CFA Control-flow Attestation

CFG Control-flow Graph

CFI Control-flow Integrity

CIV Configuration Integrity Verification

CMMN Case Management Modelling Notation

CP-ABE Ciphertext Policy Attribute Based Encryption

CPS Cyber-Physical System

CRED AK Credential

DAA Direct Anonymous Attestation

DApps Distributed Applications

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 79 of 87

DEP Data Execution Prevention

DID Decentralized identifier Identification

DLT Distributed Ledger Technology

DoA Description of Action

DPA Differential Power Analysis

DPos Delegated Proof of Stake

Dx.x Deliverable x.xl

ECC Elliptic-Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EK Endorsement Key

FMS Flight Management System

HLF Hyperledger Fabric

ICS Industrial Control System

IoT Internet of Things

JIT-ROP Just-in-Time Oriented Programming

JOP Jump-Oriented Programming

KDF Key Derivation Function

KEP Key Exposure Problem

KEW Key Exposure Window

KP-ABE Key Policy Attribute Based Encryption

MITM Man-in-the-Middle

MSP Membership Service Provider

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 80 of 87

NO Network Orchestrator

PBFT Practical Byzantine Fault Tolerance

PCR Platform Configuration Register

PLC Programmable Logic Controller

PK Public Key

RA Remote Attestation

ROP Return-Oriented Programming

SCB Security Context Broker

SE Searchable Encryption

SGX Software Guard Extensions

SK Secret Key

SoS Systems of Systems

TCB Trusted Computing Base

TEE Trusted Execution Environment

TOCTOU Time-of-Check-Time-of-Use

TPM Trusted Platform Module

WPx Work Package X

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 81 of 87

REFERENCES

[1] «OWASP Top 10: Open Web Application Security Project,» [Online]. Available:
https://sharedassessments.org/blog/owasp-top-10-open-web-application-security-
project/. [Consultato il giorno 28 9 2021].

[2] «D2.2 – Policy Modelling & Cybersecurity, Privacy and Trust Policy Constraints,»
The ASSURED Consortium, November 2021.

[3] «D3.2 – ASSURED Layered Attestation and Runtime Verification Enablers Design &
Implementation,» The ASSURED Consortium, November 2021.

[4] «The Industrial Internet Reference Architecture v1.9,» Industry IoT Consortium,
[Online]. Available: https://www.iiconsortium.org/IIRA.htm. [Consultato il giorno 2
2022].

[5] «D1.4 - Report on Security, Privacy and Accountability Models for Dynamic Trusted
Consent and Data Sharing,» The ASSURED Consortium, August 2021.

[6] C. O. a. A. Ziółkowski, A. Orlowski, P. Kaplanski, T. Sitek e W. Pokrzywnicki,
«Implementation of Business Processes in Smart Cities Technology,» Trans.
Comput. Collect. Intell., vol. 25, pp. 15-28, 2016.

[7] B. Re, R. Cognini, F. Corradini e A. Polini, «Modelling Process Intensive Scenarios
for the Smart City,» 09 2014.

[8] P. Neirotti, A. de Marco, A. C. Cagliano, G. Mangano e F. Scorrano, «Current trends
in Smart City initiatives: Some stylised facts,» Cities, vol. 38, pp. 25-36, 2014.

[9] E. Ortner, M. Mevius, P. Wiedmann e F. Kurz, «Design of Interactional End-to-End
Web Applications for Smart Cities,» in Proceedings of the 24th International
Conference on World Wide Web, Florence, Italy, 2015.

[10] I. Compagnucci, F. Corradini, F. Fornari, A. Polini, B. Re e F. Tiezzi, «Modelling
Notations for IoT-Aware Business Processes: A Systematic Literature Review,»
Business Process Management Workshops, pp. 108-121, 2020.

[11] J. Kopke, G. Meroni e M. Salnitri, «SecBPMN2BC case studies evaluation,»
Mendeley Data, vol. 1.

[12] K. Angelopoulos, V. Diamantopoulou, M. Pavlidis, H. Mouratidis, M. Salnitri, J. F.
Ruiz e P. Giorgini, «A Holistic Approach for Privacy Protection in E-Government,» in
ARES '17: Proceedings of the 12th International Conference on Availability,
Reliability and Security, Reggio Calabria, Italy, 2017.

[13] M. Salnitri, J. Jürjens, H. Mouratidis, L. Mancini e P. G. e. al., Visual Privacy
Management. Design and Applications of a Privacy-Enabling Platform, Springer,
2020.

[14] M. C. Duncan, «Trust Management and Security in Satellite Telecommand
Processing,» vol. 1380, 2011.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 82 of 87

[15] W. W. Zhao e V. Varadharajan, An Approach to Unified Trust Management
Framework, ch. An Approach to Unified Trust Management Framework, 2009, pp.
111-134.

[16] M. Blaze, J. Feigenbaum, J. Ioannidis e A. Keromytis, «The KeyNote Trust
Management System,» Matt Blaze, Using the KeyNote Trust Management System,
2001.

[17] M. Manulis, C. Bridges e R. a. Harrison, «Cyber security in New Space,» Int. J. Inf.
Secur., vol. 20, p. 287–311, 2011.

[18] «Multichain,» [Online]. Available: https://www.multichain.com/. [Consultato il giorno 2
2022].

[19] «MultiChain Github,» [Online]. Available: https://github.com/MultiChain. [Consultato il
giorno 2 2022].

[20] «Doublechain,» [Online]. Available: https://doublechain.co.kr/platform.php.
[Consultato il giorno 2 2022].

[21] «Origintrail,» [Online]. Available: https://origintrail.io/. [Consultato il giorno 2 2022].

[22] «Waltonchain,» [Online]. Available: https://waltonchain.org/. [Consultato il giorno 2
2021].

[23] «IOTA,» [Online]. Available: https://www.iota.org/. [Consultato il giorno 2 2022].

[24] «IOTA Industry Marketplace,» [Online]. Available: https://industrymarketplace.net/.
[Consultato il giorno 2 2022].

[25] K. Sampigethaya e R. Poovendran, «Aviation Cyber–Physical Systems: Foundations
for Future Aircraft and Air Transport,» Proceedings of the IEEE, vol. 101, n. 8, pp.
1834-1855, August 2013.

[26] «ARINC 827 ELECTRONIC DISTRIBUTION OF SOFTWARE BY CRATE (EDS
CRATE),» ARINC, 10 August 2020.

[27] «ARINC 835 GUIDANCE FOR SECURITY OF LOADABLE SOFTWARE PARTS
USING DIGITAL SIGNATURES,» ARINC, 2 January 2014.

[28] J. Becker, M. Indulska, M. Rosemann e P. Green, «Do process modelling techniques
get better?,» in Proceedings of the 16th Australasian Conference on Information
Systems, Australasian Chapter of the Association for Information Systems, Sydney,
Australia, 2015.

[29] «Business proces modelling notation (BPMN) version 2.02,» Object Managment
Group, 2014. [Online]. Available: https://www.omg.org/spec/BPMN/2.0.2/.
[Consultato il giorno 2 2022].

[30] M. Rosemann, A. Schwegmann e P. Delfmann, «Vorbereitung der
Prozessmodellierung,» Prozessmanagement, Springer Gabler, Berlin, Heidelberg,
2012.

[31] C. Ouyang, M. Dumas, W. Aalst, A. Hofstede e J. Mendling, «From business process
models to process-oriented software systems,» ACM Transactions on Software
Engineering and Methodology, vol. 19, n. 1, pp. 1-37.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 83 of 87

[32] R. Seiger, R. Kühn e M. e. a. Korzetz, «HoloFlows: modelling of processes for the
Internet of Things in mixed reality,» Softw Syst Model, vol. 20, pp. 1465-1489, 2021.

[33] R. R. Mukkamala, T. Hildebrandt e T. Slaats, «Towards Trustworthy Adaptive Case
Management with Dynamic Condition Response Graphs,» in 17th IEEE International
Enterprise Distributed Object Computing Conference, 2013.

[34] F. Milani, L. Garcia-Banuelos, S. Filipova e M. Markovska, «Modelling Blockchain-
based business processes: a comparative analysis of BPMN vs CMMN,» Business
Process Management Journal, vol. 27, n. 2, pp. 638-657, 2021.

[35] C. R. Carvalho, H. Mili, A. Boubaker, J. Gonzalez-Huerta e S. Ringuette, «On the
analysis of CMMN expressiveness: revisiting workflow patterns,» in 5th Adaptive
Case Management Workshop (AdaptiveCM), Colocated with EDOC, 2016.

[36] T. Kala, F. Maggi, C. D. Ciccio e C. D. Francescomarino, «Apriori and sequence
analysis for discovering declarative process models,» in Proc. IEEE 20th Int. Enterp.
Distrib. Object Comput. Conf. EDOC, 2016.

[37] «Decision Model and Notation (DMN) Tutorial,» [Online]. Available:
https://www.processmaker.com/blog/decision-model-and-notation-dmn-tutorial-
examples/. [Consultato il giorno 2 11 2020].

[38] N. Gol Mohammadi e M. Heisel, «Enhancing Business Process Models with
Trustworthiness Requirements,» in Trust Management X, Springer International
Publishing, 2016, pp. 33-51.

[39] M. Rosemann, «Trust-Aware Process Design,» in Business Process Management, T.
Hildebrandt, Boudewijn F. van Dongen; M. Roglinger, J. Mendling, 2019, pp. 305-
321.

[40] M. Müller, N. Ostern, D. Koljada, K. Grunert, M. Rosemann e A. Küpper, «Trust
Mining: Analyzing Trust in Collaborative Business Processes,» IEEE Access, vol. 9,
pp. 65044-65065, 2021.

[41] «RAMI 4.1 Reference Architectural Model for Industrie 4.0,» InTech, [Online].
Available: https://www.isa.org/intech-home/2019/march-april/features/rami-4-0-
reference-architectural-model-for-industr. [Consultato il giorno 2 2022].

[42] «D4.1 – ASSURED Blockchain Architecture,» The ASSURED Consortium,
November 2021.

[43] «D2.7 – ASSURED Collective Threat Intelligence Analysis & Forecasting
Framework,» The ASSURED Consortium, February 2022.

[44] «D3.1 – ASSURED Attestation Model and Specification,» The ASSURED
Consortium, November 2021.

[45] N. Koutroumpouchos et al., «Secure Edge Computing with Lightweight Control-Flow
Property-based Attestation,» in IEEE Conference on Network Softwarization
(NetSoft), 2019.

[46] «The ASSURED Consortium,» D3.4 – ASSURED Real-time Monitoring and Tracing
Functionalities, February 2022.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 84 of 87

[47] H. B. Debes e T. Giannetsos, «Segregating Keys from noncense: Timely Exfil of
Ephemeral Keys from Embedded Systems,» in Distibruted Security Conference for
Sensor Systems (DCOSS), 2021.

[48] «IBM's TPM 2.0 TSS,» IBM, [Online]. Available:
https://sourceforge.net/projects/ibmtpm20tss/. [Consultato il giorno 2 2022].

[49] «Intel TSS,» Intel, [Online]. Available: https://github.com/tpm2-software/tpm2-tss.
[Consultato il giorno 2 2022].

[50] «Microsoft TSS,» Microsoft, [Online]. Available:
https://github.com/Microsoft/TSS.MSR. [Consultato il giorno 2 2022].

[51] «Trousers TSS,» [Online]. Available: http://trousers.sourceforge.net/. [Consultato il
giorno 2 2022].

[52] «Java TSS,» [Online]. Available: https://sourceforge.net/projects/trustedjava/.
[Consultato il giorno 2 2022].

[53] W. Mao, Y. Fei e C. Chunrun, «Daonity: grid security with behaviour conformity from
trusted computing,» in First ACM workshop on Scalable trusted computing, 2006.

[54] F. Ma, J. Menéndez, M. Oliva e J. Ríos, «Collaborative engineering: An airbus case
study,» in International Conference of The Manufacturing Engineering Society, 2013.

[55] «Multi annual strategic research and innovation agenda for the ecsel joint
undertaking,» Technical report, ECSEL, 2015.

[56] J. Menéndez, F. Mas, J. Serván e J. Ríos., Virtual verification of an aircraft final
assembly line industrialization: An industrial case., Advances in Manufacturing
Systems, 2012.

[57] J. R. Walters e N. R. Nielsen., Crafting knowledge-based systems: Expert systems
made realistic., John Wiley & Sons, Inc., 1988.

[58] B. Tang, «Toward intelligent cyber-physical systems: Algorithms, architectures, and
applications,» 2016.

[59] T. Dreossi, A. Donzé e S. A. Seshia, «Compositional falsification of cyber-physical
systems with machine learning components,» Journal of Automated Reasoning 63.4,
pp. 1031-1053, 2019.

[60] K. R. Varshney e H. Alemzadeh., «On the safety of machine learning: Cyber-physical
systems, decision sciences, and data products,» Big data 5.3, pp. 246-255, 2017.

[61] L. Sha, S. Gopalakrishnan, X. Liu e Q. Wang., «Cyber-physical systems: A new
frontier,» in IEEE International Conference on Sensor Networks, Ubiquitous and
Trustworthy Computing, 2008.

[62] C. M. Holloway, Understanding the Overarching Properties, Hampton VA: National
Aeronautics and Space Administration, Langley Research Center, 2019.

[63] «D2.1 – Risk Assessment Methodology and Threat Modelling,» The ASSURED
Consortium, November 2021.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 85 of 87

[64] T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A.-R. Sadeghi e G. Tsudik.,
«Things, trouble, trust: On building trust in IoT systems,» in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), 2016.

[65] M. Ambrosin, M. Conti, R. Lazzeretti, M. M. Rabbani e S. Ranise., «Collective
Remote Attestation at the Internet of Things Scale: State-of-the-art and Future
Challenges,» in IEEE Communications Surveys & Tutorials, 2020.

[66] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz e A. Sahai, «Exposure-resilient
functions and all-or-nothing transforms,» in International Conference on the Theory
and Applications of Cryptographic Techniques, Berlin, Heidelberg, 2000.

[67] B. Kaplan, «Ram is key extracting disk encryption keys from volatile memory,» 2007.

[68] NVD, CVE-2020-9395 Detail, 2020.

[69] H. B. Debes e T. Giannetsos., «Segregating Keys from noncense: Timely Exfil of
Ephemeral Keys from Embedded Systems,» in Wireless Security Conference , 2021.

[70] S. Bratus, N. D’Cunha, E. Sparks e S. W. Smith, «TOCTOU, traps, and trusted
computing,» in International Conference on Trusted Computing, Berlin, Heidelberg,
2008.

[71] B. Larsen, H. B. Debes e T. Giannetsos, «CloudVaults: Integrating Trust Extensions
into System Integrity Verification for Cloud-Based Environments,» in European
Symposium on Research in Computer Security, 2020.

[72] Nunes, I. D. Oliveira, S. Jakkamsetti, N. Rattanavipanon e G. Tsudik., «On the
TOCTOU problem in remote attestation.,» 2020.

[73] «Microsoft Corporation, Data Execution Prevention,» 2005. [Online]. Available:
http://technet2.microsoft.com/WindowsServer/en/library/b0de1052-4101-44c3-a294-
4da1bd1ef2271033. mspx?mf r=true.

[74] S. Designer., «lpr LIBC RETURN exploit,» 1997. [Online]. Available:
http://insecure.org/.

[75] H. Shacham, «The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86),» in Proceedings of the 14th ACM conference on
Computer and communications security, 2007.

[76] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham e M. Winandy,
«Return-oriented programming without returns,» in Proceedings of the 17th ACM
conference on Computer and communications security, 2010.

[77] T. Bletsch, X. Jiang, V. W. Freeh e Z. Liang., «Jump-oriented programming: a new
class of code-reuse attack,» in Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, 2011.

[78] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen e A.-R. Sadeghi, «Just-
in-time code reuse: On the effectiveness of fine-grained address space layout
randomization,» in IEEE Symposium on Security and Privacy, 2013.

[79] N. Mehta, «Heartbleed,» [Online]. Available: https://plus.google.com/+
MarkJCox/posts/TmCbp3BhJma, 2014.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 86 of 87

[80] S. Chen, J. Xu, E. C. Sezer, P. Gauriar e R. K. Iyer., «Non-Control-Data Attacks Are
Realistic Threats,» in USENIX Security Symposium, 2005.

[81] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena e Z. Liang, «Data-oriented
programming: On the expressiveness of non-control data attacks,» in IEEE
Symposium on Security and Privacy (SP), 2016.

[82] «CAPEC-186: Malicious Software Update,» [Online]. Available:
https://capec.mitre.org/data/definitions/186.html.

[83] M. Srivastava, An Introduction to Network Security Attacks, Springer, Singapore,
2021.

[84] R. H. Jhaveri, S. J. Patel e D. C. Jinwala., «DoS attacks in mobile ad hoc networks: A
survey,» in second international conference on advanced computing &
communication technologies. IEEE, 2012.

[85] H. Mustafa, W. Xu, A. R. Sadeghi e S. Schulz., «You can call but you can't hide:
detecting caller id spoofing attacks».

[86] B. Han, ShreyaTayade e H. D.Schotten., «Modeling profit of sliced 5G networks for
advanced nework resource management and slice implementation,» in IEEE
Symposium on Computers and Communications (ISCC), 2017.

[87] A.Ledjiar, E.Sampin, C.Talhi e M.Cheriet, «Network Function Virtualization as a
Service for multi-tenant software defined networks,» in 4th Int. Conf. on Software
Defined Systems (SDS), Valencia, 2017.

[88] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini e H. Flinck., « Network slicing
andsoftwarization: A survey on principles, enabling technologies, and solutions.,» in
IEEE Communica-tions Surveys & Tutorials 20, 2018.

[89] «5G-NORMA,» [Online]. Available: http://www.it.uc3m.es/wnl/5gnorma/.

[90] 5G-MoNArch. [Online]. Available: https://5g-monarch.eu/.

[91] P. Kocher, J. Jaffe e B. Jun., «Differential power analysis,» in Annual international
cryptology conference, 1999.

[92] Y. Zhou e D. Feng, «Side-Channel Attacks: Ten Years After Its Publication and the
Impacts on Cryptographic Module Security Testing,» in IACR Cryptol. ePrint Arch,
2005 .

[93] O’Flynn, Colin, Zhizhang e D. Chen., «Chipwhisperer: An open-source platform for
hardware embedded security research,» in International Workshop on Constructive
Side-Channel Analysis and Secure Design, 2014.

[94] S. Mangard, N. Pramstaller e E. Oswald., « Successfully attacking masked AES
hardware implementations,» in International workshop on cryptographic hardware
and embedded systems, 2005.

[95] D. Lee, D. Jung, I. T. Fang, C.-C. Tsai e R. A. Popa, «An off-chip attack on hardware
enclaves via the memory bus,» in 29th {USENIX} Security Symposium ({USENIX}
Security 20), 2020.

D1.3: Operational SoS Process Models & Specification of Properties

© 2020-2023 ASSURED Consortium Page 87 of 87

[96] «ASSURED Use Cases and System Requirements,» The ASSURED Consortium, 8
3 2021.

[97] G. Dessouky, T. Abera, A. Ibrahim e A.-R. Sadeghi., «Litehax: lightweight hardware-
assisted attestation of program execution,» in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018.

[98] L. Gu, X. Ding, R. H. Deng, B. Xie e H. Mei., «Remote attestation on program
execution,» in Proceedings of the 3rd ACM workshop on Scalable trusted computing
(STC '08). Association for Computing Machinery, New York, NY, USA, 2008.

[99] «D4.3 - ASSURED Blockchain-based Control Services and Crypto functions for
Decentralized Data Storage, Sharing and Access Control - version 1,» The
ASSURED Consortium, March 2022.

