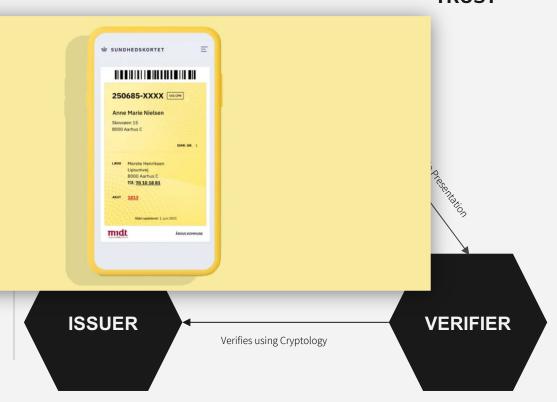


THE MODERN FIGHT FOR FREEDOM

PRACTICAL ASPECTS OF TAKING BACK CONTROL OF YOUR DIGITAL IDENTITY

DEVELOPMENT OF IDENTITY

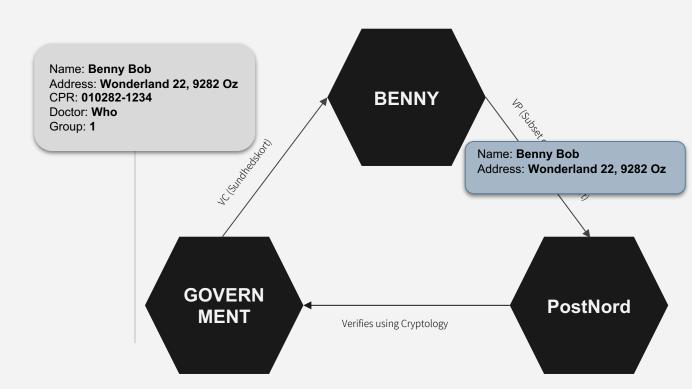


TRIANGLE OF TRUST

Verifiable Credential (VC)
Contains claims and attributes

Verifiable Presentation (VP)

Contains a subset of claims, including proofs, from the VC


TRIANGLE OF TRUST

Verifiable Credential (VC)

Contains claims and attributes

Verifiable Presentation (VP)

Contains a subset of claims, including proofs, from the VC

THE CHALLENGES OF SELF-SOVEREIGNTY

USER RESPONSIBILITY

Trust and responsibility moved f centralized, high-value, high-security organizations to low-value, low-security users.

- 1. How can we guarantee that the credential was not moved?
- 2. How do we make sure the wallet-platform isn't compromised?
- 3. ...And how do we do this, while giving the user control over their own privacy?

MALICIOUSNESS

might share credentials and act in malice.

Triangle of Trust

THE TPM

TPM Fundamentals

- Cryptographic Processor
 - Small Internal Storage
- Policy Engine: Conditional Cryptography
- Keys are encrypted can only be read by this particular TPM

Keys

Can be linked to *policies*, that can make the key usable under certain conditions, or limit the abilities of the key. Can *not* be moved to another platform*.

*Keys can, if needed, be created to be copyable, but it's not common.

PCRs

Contains a digital fingerprint of the residing platform. Firmware, bootloader, etc. Can even hold fingerprints of applications.

The ASSURED approach

By adding a **unique TPM key** to every issued **credential**, the issuer can get guarantees that the credential is safe. How?

By signing all **presentations** with this key. But it requires some properties.

KEY PROPERTIES

- May only be used in a Trusted State (PCRs)
- May only be used by authorization of the wallet
- Can only be used on particular TPM (hence: platform)
- Can provide *unlinkable* signatures (DAA)
- Policy (Trusted State) can be updated by the issuer, and only the Issuer.

All **presentations** must be signed by this key. If verified, the verifier knows

- The presentation comes from a trusted platform according to the issuer - if the verifier trusts the issuer, it now trusts that the presentation isn't a product of malicious software
- The presentation is made through an authorized wallet
- The credential has not been moved ... Or has it?

DAA KEY

It's not possible for the verifier to determine *which* key gave the signature, only that it was valid and issued by that Issuer. What if a *similar* holder provided a signature, but he had a different security level?

SOLUTION

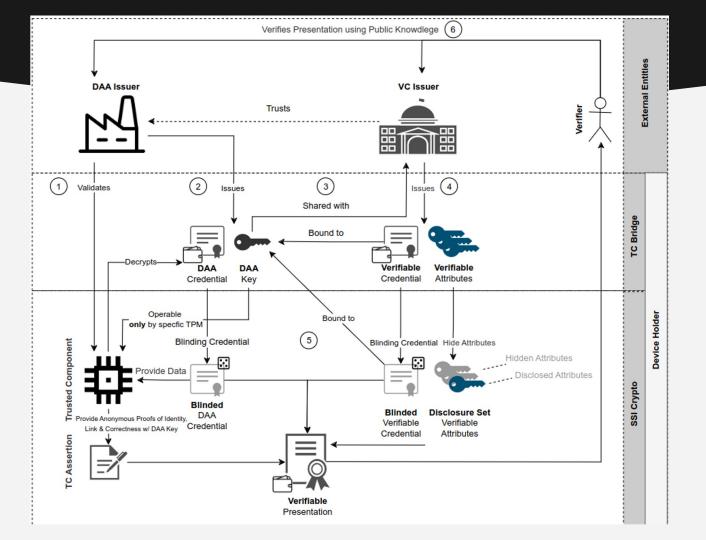
- Make the key part of the credential
 - Only a platform that can load that particular key, can get the claims.
 - This is possible through DAA-A

Conclusion

IT IS DIFFICULT

It is very difficult to protect privacy while at the same time guarantee security.

IT IS WORTH IT


Ensuring **we** hold our identities reduces the amount of data out there, enhances the privacy of the holder.

THERE IS A LOT TO

BE DONE

We're not finished, there is a lot to be done, and a lot of parties that need to work together. But it can be done, and it must be done.

This is the modern fight for freedom, and it's worth the fight.

