-,VQ)“'_oﬂ W ety "
Ny)

- RS .
e T ke '
. X G h s Fad N A R : .
- - - 2 C
.

Control Integrity Verification -
Attestation Scheme

Alexandros Sampanis
Security Engineer Demo webinar on Attestation Primitives

UBITECH Ltd Online | 31 May 2023

www.project-assured.eu

https://www.project-assured.eu/

ASSURED Architecture Overview

Blockchain

'Server ’ ‘ SCB]

PrivacyCA

DAA Credential Register DAA
KEY Attestation .
Tasks Attestation

Report

Prover R & gRPC Verifier

Attestation Task [»
: < client
Attestation e -

Agent Attestation
Create Secure
policy

Fetch Traces

reate Verifiable
Presentation

TPM
Wallet

CFA Toolkit

Traces

[Tracer ’[TPM]

L)
| pub part of tpm key, traces/hash_trace ABE }

Aﬁributes []

v

VC ISSUER

Verifiable
Credential

Control Integrity Verification ASSURE

ASSURED Context — Enables enrolled devices to attest to their
correct configuration during run-time when requested through a
deployed attestation policy

This protocol is responsible for calculating the configuration of a running binary as a hash digest
so it can be used from the TPM as a key-restriction usage policy. To make sure that every time
we fetch it, a hashed trace of a binary is compared ‘on-the-go’ with the expected one (golden
hash), we use the Platform Configuration Registers (PCR) of the TPM to store and have direct
access to it through tpm commands like PCR_Extend and policy PCR.

WWWPROJECT-ASSURED.EU © Copyright ASSURED 2020-2023 3

https://www.project-assured.eu/

skex Pksch, pktre. Khpr Z Pksch, Skpcapkek Pkitrc. skech

TPM2_StartAuthSession()

sy — fresh s

~Key Restriction Usage
Policies RN

sy = H(CC || pkacs,)

<= VerifyTk(acomm.te. pkacs,,)

In order to integrate Local Attestation into our i e NN,
scheme we exploit the key-restriction usage i
policies. A Trusted Third Party (SCB) constructs a T Caoa______,
policy digest, which will be binded with the AK. o = PrOPATOARON(. Pk i)
e Load from the Platform Configuration tep hep == H(CP)
Registers a pre-defined correct state of the | oo S ;

Device (TPM2_policyPCR). | TEMEL oaERSTRtel)

Verify the the freshness and integrity of the the e #e .
output of the Tracer (TPM2_policyOR | Tz SartAunSesson)
TPM2_policySIGNED). o3 freitin

Use a certificate from a Trusted Third Party nreM < {023

(SCB) to construct the final run-time policy et s
Digest and gain access to the AK key TEM2 PolicySigned(K, . 2. %)

(TPM2_policyAUTHORIZE). s2 = H(s2 [| CC || Kerename)
o Using TPM2_policyAUTHORIZE the R e eraceCrTs0
protocol can support updates during iEREReE
run-time. s2 = H(s2 || CC || Z|| he)

s2 = H(CC || pkacs,,)
<= VerifyTk(asign. te. Pkacs,)

A H(s2) == asign
TPM2.Sign(sz, Kh g b p.ty)

Gep = Sign(hep. skax)

< sy == Policy(AK)

A VeowriforTlit)

o
Tt

- Secure Enrollment

Why do we need a Secure on-boarding?
Key creation with Trust.
Block unauthorized key usage.
How is this achieved?
Key Restriction Usage Policies:
Store pre-defined representations of
the device state in the TPM's PCRs.
Attest against all allowed software.
Establish trust between the Tracer
and the TPM.
Verify that this configuration came
from trustworthy source.
What did we achieve?
Local attestation

“ CIV'Breakdown:

The service lets the CIV Verifier (through its
Attestation Agent) request CIV traces
generation

In turn, the Prover tracer computes the
hashes over all loaded libraries and
programs in the edge device

Finally, the tracer signs the generated
traces and sends them to the Prover’s
TPM-based Wallet for verification and
signing with the produced AK

TPM Tracer Device Verifier
sk, daa,,.,
Pkak, . Khak. pktre, sktre,
Leomm Lsigns Baigns Goomm DKy sk,
ny, + Policy,one.

Verify(H (np). pkp)
np. Property

N = Trace(Property)

TPM2_StartAuthSe:

ssion()

W il dnnasnnaiat-

_TPM2_PolicyCommandCode(CC_Commit, s,,)
ol bl et 4

sp = H(sp || CC || CC-Commit)
TPM2_PolicyAuthorize(s . ac.

ARGt

sp = H(CC || pkacs,,)

<= VerifyTk(acomm.tecomm,pksch,)

A H(sp) == acomm

TPM2_Commit(Poi
D

C D =ComputeCommitData)

= CC == CCCommit
A S, == pkyye — Policy
cD
-l
Ndaa

Hy,.. = H(Nyaa)

amm ; tcomm, Py,)

nts)

=PrepareSign(daa,,.. CD, H(N))

Sign(H(np).skp)

o np. Propertyc Policy

L™

P il

“ CIV'Breakdown (2)

The AK can only sign upon approval from
the tracer, as well as holding correct PCR
CINES

In order to allow this, the tracer must sign a
nonce

This is done by starting a session and
sending the nonce to the tracer. The tracer
then signs the nonce and returns it

The client then executes PolicyPCR in the
session, to verify that we are in a correct
state

After this the tracer’s public key is loaded
into the TPM and policySigned with the
signed nonce and the loaded key is
executed

If this is a success, the PolicyOR command
can be executed successfully (as we satisfy
the signing policy), and policyAuthorize
can correctly be executed with the
authorization ticket

TPM Tracer Device Verifier

daa., N, pk, sky. pk;,
PRakns Khak, pkire, Skir

TPM2 PolicyRestart(s,)

sp — Iresh S

H.,,, = ComputeLocalAuthorization(H (N'), ne. pkay,,)

Ga,,, = Sign(Ha,, . sktrc)

TPM2_LoadExternal(pkeyc)
¥ ioaienren2x DR i —

Khe = phere

Khe
-y

TPM2_PolicySigned(SignParams, Ha,, .0a,, .5p)
€

H, _, = ComputeRelerence(SignParams)
sp = H(Sy || CC || Khe — name)

<= VeritySignature(Ha__,.0a,, . . Kht)

TPM2_PolicyPCR(Z. 5,,)

h, = H(PCR,.VieI)

sp=H(sp || CC || Z|| he)
TPMZ.F:ohcyAulhonze(a, +@sign.tsign.pksch,)

sp = H(CC || pkacs,,)
> VerifyTk(asign: tasgn-Pkacs,)

A H(sp) == au

gn
TPM2.Sign(H v, . . Khai)
R L

CpRef =ComputeCpHash()

OINyow = Sign(Hy,__.skai)
<= CpRef == S, — CpHash
A Sp == Khgy — Policy
AMAGICE Hy,
ONgoa

e, I

ONgoa H(N)

DAAVerity(Nyua. H(N). pkis)

Integrity of Tracer / Authentication of
Traces

¢ The Tracer is responsible for continuously monitoring the processes executed in the
device it belongs to, and collects information that is required in the context of the
attestation schemes.

4% This information can include control flow graphs used in Control-Flow Attestation (CFA),
and hashes of configuration properties used in Configuration Integrity Verification (CIV).

¢ The Tracer is executed as a user space program and needs to be added to our Trusted
Computing Base.

> |n order to prove the validity of the measurements that the TPM receives from the Tracer
and uses in the context of the implemented attestation protocols, we employ a
Pre-Installed Key

> This key will be used to send signed traces to the Verifier, who is responsible for verifying
their integrity.

> Protocol securing the integrity of the reported traces. Protects against replay attacks
and impersonation attacks, and ensures the integrity of the traces during correct
protocol execution.

© Copyright ASSURED 2020-2023 8

TPM Tracer Verifier
skrpa. pkrps skr., pkr, N (Traces) phr

“Traces Integrity &&
Authentication

P =DefinePolicy @
TPM2_CreatePrimary(P)

Khppa = (skrpasipkreas)
Kuppa-KrpMm
FrNeSaniuhssssion
The TPM shares with the Tracer the Attestation Key’s name.

S, — fresh §

For every invocation of the Tracer the TPM creates a fresh

o . - Hy = H(N)
policy session and shares the session nonce. i

H, = ComputeAuthorizationDigest(Kp . Hy) @)

oy, = Sign (Ha)sk,

The Tracer then calculates an authorization digest which TPM2_LoadExternal(pkr)
. A g e —_—
includes the session nonce, the Attestation Key’s name and the ; ’
hp —+ phy
hashed traces. ' Kig
-~
i 1 : X . . X TPM2_PolicySigned(Params, oy, . Kj,.)
Tracer Signs the authorization digest with its private key. |
Happy = CompuleAulthgesl(Params)@

S=H(S||CC|| Kny — name)

The TPM loads the Tracer’s Public Key and executes
TPMZ _policySigr}ed with the policy session that was created B sk Fore 4 ot
specifically for this challenge. TPM2.Sign(H x . Knzpas+ Sp)

<= VeritySignature(H, ou, Kng)

AT PM

= o d " 4 CpRef = ComputeCpHash @
If the correct key was used to sign the Authorization Digest, then orpa = Son (Hiv: Ky)

o o o o = TPM = N:Bhrpum
the session digest should now match the policy digest of the &= CpRef == S — CpHash

TPM key AS == Kpyppy — Policy
oTp,

arpum.-Krpam. N. o,

We can now use the AK to sign data from the tracer, for

verification purposes P,y = DefinePolicy(Pk,,,..) @
Ares

= ComputeAuthorizationDigest(K7par. Hy) @)
VeritySignature(o gy, . A, . 5. pkr)
VerifySignature(H(N).orpas. Krpas — phrpag)

VerityPolicy(Py ;. KTpPa1)

Security Properties

not possible by an adversary, because every time PolicySigned is
executed, it requires the Session Nonce. The attempt of a replay

ACTlEWRCHE Sl - 12k would be detected when the TPM calculates the reference

value of the authorization digest

. . If the TSS changes the Tracer’s values that have been transmitted,
Traces integrity {48 change would be detected during the verification phase, since
the sig_;natures would not match the ones from the provided traces

Tracer’s not possible, as the adversary cannot access the Tracer's
impersonation private key and it would be unable to provide a valid signature
over the Authorization Digest

Traces
Rep i

Impersonati-
o

© Copyright ASSURED 2020-2023

Tracer's CIV Invocation

— The tracer infers the

location of each page

loaded in memory for the e S S
libraries, reads the Sashest [
content of the page, and E ::‘e: " :E;;LD:»(1:1c':51:‘3fe':ed:~,1bkg;_‘b.‘,af~:iv 7e518e3ac2457cf9d5570137de77
computes a hash of 64 arse },
bytes using the SHA-256 { ";;f‘::d""ljli‘.flde?‘lil 77b5b92a10c7a78e9fal347f42ccaB84195fc7fa584b99£f91
algorithm.

— The produced trace “wname® : "1d-2.27.s0",

thus contains a Set Of "bafhﬁf: '%ad"'facbZSE‘Gic{ve‘if}éc[04d7d1d16b024f5805ff7cb47c7a85dabd8b48892
hashes representing the g oo

in-memory configuration ’

of the device

228f707044edf6d3be796adccd5f3c8f993f41b036beb10£fd69d7

© Copyright ASSURED 2020-2023

B e

THANKS

www| PROJECT-ASSURED.EU y @Project_Assured
s . " ASSURED project is funded by the EU's Horizon2020
P programme under Grant Agreement number 952697

https://www.project-assured.eu/
https://www.project-assured.eu/
https://twitter.com/Project_Assured
https://twitter.com/Project_Assured

