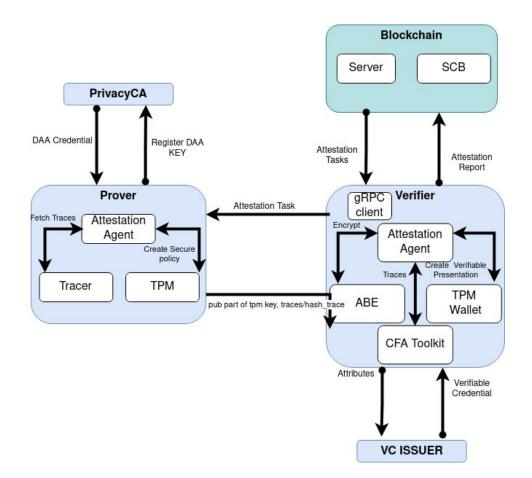
# ASSURE

# Control Integrity Verification -Attestation Scheme

Alexandros Sampanis Security Engineer


UBITECH Ltd

**Demo webinar on Attestation Primitives** 

Online | 31 May 2023

www.project-assured.eu

## ASSURED Architecture Overview

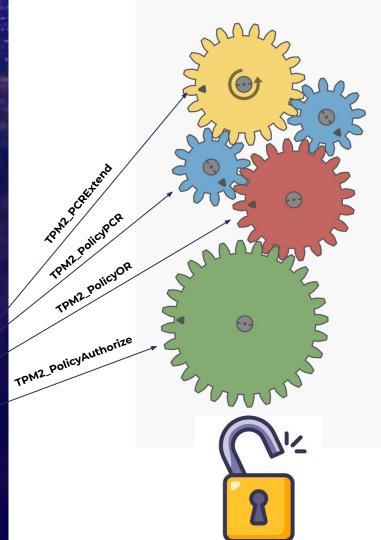




ASSURED Context  $\rightarrow$  Enables enrolled devices to attest to their correct configuration during run-time when requested through a deployed attestation policy

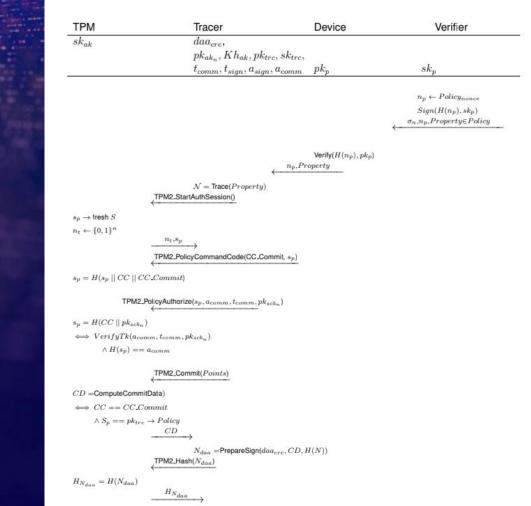
This protocol is responsible for calculating the configuration of a running binary as a hash digest so it can be used from the TPM as a key-restriction usage policy. To make sure that every time we fetch it, a hashed trace of a binary is compared 'on-the-go' with the expected one (golden hash), we use the Platform Configuration Registers (PCR) of the TPM to store and have direct access to it through tpm commands like PCR\_Extend and policy\_PCR.

# Key Restriction Usage Policies


In order to integrate Local Attestation into our scheme we exploit the key-restriction usage policies. A Trusted Third Party (SCB) constructs a policy digest, which will be binded with the AK.

- Load from the Platform Configuration Registers a pre-defined correct state of the Device (TPM2\_policyPCR).
- Verify the the freshness and integrity of the the output of the Tracer (TPM2\_policyOR | TPM2\_policySIGNED).
- Use a certificate from a Trusted Third Party (SCB) to construct the final run-time policy Digest and gain access to the AK key (TPM2\_policyAUTHORIZE).
  - Using TPM2\_policyAUTHORIZE the protocol can support updates during run-time.

```
pksch, pktrc, KhEK, I
skek
                                                                                      pkscb, skpcapkek
                                                                                                                                 pktrc, skscb
                                 TPM2_StartAuthSession()
 s_1 \rightarrow fresh s
                         TPM2_PolicyCommandCode(Commit, s1)
 s_1 = H(s_1 \parallel CC \parallel Commit)
                      TPM2_PolicyAuthorize(s_1, a_{comm}, t_c, pk_{scb_n})
 s_1 = H(CC || pk_{scb_n})
   \iff VerifyTk(a_{comm}, t_c, pk_{scb_n})
            \wedge H(s_1) == a_{comm}
                                  TPM2.Commit(s_1, K_{h_{AK}})
  c_d = CalcCD(K_{hAK})
   \iff s_1 == Policy(AK)
                                            C_{data}
                                             CP = PrepareActivation(pk_{pca}, pk_{ck}, C_{data}, c)
                                      TPM2_Hash(CP)
  t_{cp}, h_{cp} == H(CP)
                                            t_{cp}, h_{cp}
                                  PM2_LoadExternal(pk sch)
  K_{h_{scb}} \rightarrow (pk_{scb})
                                            Khach
                                   PM2_StartAuthSession(
  s_2 \rightarrow fresh s
  n_{TPM} \leftarrow \{0, 1\}^n
                                           S2. NTPM
                                             \sigma_n = \text{Sign}(H(n_{TPM}), sk_{trc})
                            TPM2_PolicySigned(K_{h_{tre}}, s_2, \sigma_n)
  s_2 = H(s_2 \parallel CC \parallel K_{trc_{name}})
   \iff Verify(\sigma_n, n, pk_{trc})
                                  TPM2_PolicyPCR(I, s2)
  h_c = H(PCR_i, \forall i \in I)
  s_2 = H(s_2 || CC || I || h_c)
                       TPM2_PolicyAuthorize(s2, asign, ts, pkscbn)
  s_2 = H(CC || pk_{scb_n})
   \iff VerifyTk(a_{sign}, t_c, pk_{scb_n})
           \wedge H(s_2) == a_{sign}
                              TPM2.Sign(s_2, K_{h_{AK}, h_{cp}, t_{cp}})
  \sigma_{cp} = Sign(h_{cp}, sk_{ak})
   \iff s_2 == Policy(AK)
           A Vanifa/Th/t )
```


#### Secure Enrollment

- Why do we need a Secure on-boarding?
  - Key creation with Trust.
  - Block unauthorized key usage.
- How is this achieved?
  - Key Restriction Usage Policies:
    - 1. Store pre-defined representations of the device state in the TPM's PCRs.
    - 2. Attest against all allowed software.
    - 3. Establish trust between the Tracer and the TPM.
    - 4. Verify that this configuration came from trustworthy source.
- What did we achieve?
  - Local attestation



# CIV Breakdown

- The service lets the CIV Verifier (through its Attestation Agent) request CIV traces generation
- In turn, the Prover tracer computes the hashes over all loaded libraries and programs in the edge device
- Finally, the tracer signs the generated traces and sends them to the Prover's TPM-based Wallet for verification and signing with the produced AK



# CIV Breakdown (2)

- The AK can only sign upon approval from the tracer, as well as holding correct PCR values
- In order to allow this, the tracer must sign a nonce
- This is done by starting a session and sending the nonce to the tracer. The tracer then signs the nonce and returns it
- The client then executes PolicyPCR in the session, to verify that we are in a correct state
- After this the tracer's public key is loaded into the TPM and policySigned with the signed nonce and the loaded key is executed
- If this is a success, the PolicyOR command can be executed successfully (as we satisfy the signing policy), and policyAuthorize can correctly be executed with the authorization ticket

| TPM | Tracer                                   | Device | Verifier        |
|-----|------------------------------------------|--------|-----------------|
|     | $daa_{cre}, \mathcal{N},$                | $pk_p$ | $sk_p, pk_{is}$ |
|     | $pk_{ak_n}, Kh_{ak}, pk_{trc}, sk_{trc}$ |        |                 |

TPM2\_PolicyRestart(sp)

 $s_p \rightarrow \text{fresh } S$ 

$$\begin{split} H_{a_{sig}} &= \text{ComputeLocalAuthorization}(H(\mathcal{N}), n_t, pk_{ak_n}) \\ \sigma_{a_{sig}} &= Sign(H_{a_{sig}}, sk_{trc}) \end{split}$$

TPM2\_LoadExternal(pktrc)

 $Kh_t \rightarrow pk_{tre}$ 

Kht

TPM2\_PolicySigned(SignParams,  $H_{a_{sign}}, \sigma_{a_{sign}}, s_p$ )

$$\begin{split} H_{a_{ref}} &= \text{ComputeReference(SignParams)} \\ s_p &= H(S_p \mid\mid CC \mid\mid Kh_t \rightarrow name) \\ &\iff \text{VerifySignature}(H_{a_{ref}}, \sigma_{a_{sign}}, Kh_t) \end{split}$$

TPM2\_PolicyPCR( $I, s_p$ )

 $\iff VerifyTk(a_{sign}, t_{sign}, pk_{scb_n})$ 

 $\wedge H(s_p) == a_{sign}$ 

TPM2\_Sign $(H_{N_{daa}}, Kh_{ak})$ 

```
 \begin{split} &CpRef = \mathsf{ComputeCpHash}() \\ &\sigma_{N_{daa}} = Sign(H_{N_{daa}}, sk_{ak}) \\ &\Longleftrightarrow CpRef = = S_p \rightarrow CpHash \\ &\wedge S_p = = Kh_{ak} \rightarrow Policy \\ &\wedge \mathsf{MAGIC} \in H_{N_{daa}} \\ &\sigma_{N_{daa}} \end{split}
```

 $\sigma_{N_{daa}}, H(N)$ 

 $\mathsf{DAAVerify}(N_{daa}, H(N), pk_{is})$ 

### Integrity of Tracer / Authentication of Traces

- The Tracer is responsible for continuously monitoring the processes executed in the device it belongs to, and collects information that is required in the context of the attestation schemes.
- This information can include control flow graphs used in Control-Flow Attestation (CFA), and hashes of configuration properties used in Configuration Integrity Verification (CIV).
- The Tracer is executed as a user space program and needs to be added to our Trusted Computing Base.
  - In order to prove the validity of the measurements that the TPM receives from the Tracer and uses in the context of the implemented attestation protocols, we employ a Pre-Installed Key
  - This key will be used to send signed traces to the Verifier, who is responsible for verifying their integrity.
  - Protocol securing the integrity of the reported traces. Protects against replay attacks and impersonation attacks, and ensures the integrity of the traces during correct protocol execution.

# Traces Integrity && Authentication

- The TPM shares with the Tracer the Attestation Key's name.
- For every invocation of the Tracer the TPM creates a fresh policy session and shares the session nonce.
- The Tracer then calculates an authorization digest which includes the session nonce, the Attestation Key's name and the hashed traces.
- Tracer Signs the authorization digest with its private key.
- The TPM loads the Tracer's Public Key and executes TPM2\_policySigned with the policy session that was created specifically for this challenge.
- If the correct key was used to sign the Authorization Digest, then the session digest should now match the policy digest of the TPM key
- We can now use the AK to sign data from the tracer, for verification purposes

| Tracer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Verifier                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $sk_T, pk_T, N$ (Traces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $pk_T$                                                                                                                                                                                                                                                                                                                                                                                          |
| P = DefinePolicy(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                 |
| TPM2_CreatePrimary(P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\xrightarrow{K_{h_{TPM}}, K_{TPM}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |
| TPM2_StartAuthSession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Individual of children in and the children in the second state of the sec</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\xrightarrow{S_p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                 |
| $H_N = H(N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                 |
| $H_a = {\sf ComputeAuthorizationDiges}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $st(K_{TPM}, H_N)$ (2)                                                                                                                                                                                                                                                                                                                                                                          |
| $\sigma_{H_{\alpha}} = \text{Sign} (H_{\alpha})_{sk_{T}}$ $\underbrace{\text{TPM2\_LoadExternal}(pk_{T})}_{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\xrightarrow{K_{h_T}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $sk_{T}, pk_{T}, N \text{ (Traces)}$ $P = \text{DefinePolicy } \text{(f)}$ $\overleftarrow{PM2.CreatePrimary(P)}$ $\overleftarrow{H_{N}PM2.StartAuthSession}$ $\overleftarrow{PM2.StartAuthSession}$ $\overrightarrow{S_{p}}$ $H_{N} = H(N)$ $H_{a} = \text{ComputeAuthorizationDigen}$ $\sigma_{H_{a}} = \text{Sign } (H_{a})_{sk_{T}}$ $\overleftarrow{PM2.LoadExternal(pk_{T})}$ $K_{h_{T}}$ |

TPM2\_PolicySigned(Params,  $\sigma_{H_a}, K_{h_T}$ )

 $\begin{array}{l} H_{a_{TPM}} = \texttt{ComputeAuthDigest(Params)} \textcircled{2} \\ S = H(S \mid\mid CC \mid\mid K_{h_T} \rightarrow name) \\ \Longleftrightarrow \texttt{VerifySignature}(H_{a_{TPM}}, \sigma_{H_a}, K_{h_T}) \\ S \rightarrow \texttt{CpHash} = \texttt{Params} \rightarrow \texttt{CpHash} \end{array}$ 

TPM2\_Sign $(H_N, K_{h_{TPM}}, S_p)$ 

 $\begin{array}{l} \mathsf{CpRef} = \mathsf{ComputeCpHash} \textcircled{3} \\ \sigma_{TPM} = \mathsf{Sign} \left( H_N, K_{h_{TPM}} \right) \\ \Longleftrightarrow \quad CpRef = S \rightarrow CpHash \\ \land S = = K_{h_{TPM}} \rightarrow Policy \end{array}$ 

OTPM,

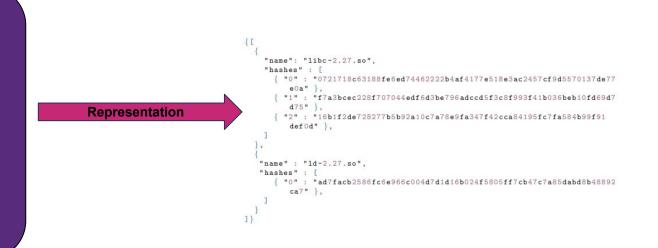
 $\sigma_{TPM}, K_{TPM}, N, \sigma_{Ha}$ 

 $P_{ref} = \text{DefinePolicy}(Pk_{t_{name}}) \textcircled{1}$   $A_{ref} = \text{ComputeAuthorizationDigest}(K_{TPM}, H_N) \textcircled{2}$ VerifySignature( $\sigma_{H_u}, A_{ref}, pk_T$ )
VerifySignature( $H(N), \sigma_{TPM}, K_{TPM} \rightarrow pk_{TPM}$ )
VerifyPolicy( $P_{ref}, K_{TPM}$ )

# Security Properties

| Replay attacks         | not possible by an adversary, because every time PolicySigned is<br>executed, it requires the Session Nonce. The attempt of a replay<br>attack would be detected when the TPM calculates the reference<br>value of the authorization digest |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traces integrity       | If the TSS changes the Tracer's values that have been transmitted,<br>this change would be detected during the verification phase, since<br>the signatures would not match the ones from the provided traces                                |
| Tracer's impersonation | not possible, as the adversary cannot access the Tracer's private key and it would be unable to provide a valid signature over the Authorization Digest                                                                                     |








# Tracer's CIV Invocation

 $\rightarrow$  The tracer infers the location of each page loaded in memory for the libraries, reads the content of the page, and computes a hash of 64 bytes using the SHA-256 algorithm.

→ The produced trace thus contains a set of hashes representing the in-memory configuration of the device





# THANKS









ASSURED project is funded by the EU's Horizon2020 programme under Grant Agreement number 952697