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Control Integrity Verification ASSURE

ASSURED Context — Enables enrolled devices to attest to their
correct configuration during run-time when requested through a
deployed attestation policy

This protocol is responsible for calculating the configuration of a running binary as a hash digest
so it can be used from the TPM as a key-restriction usage policy. To make sure that every time
we fetch it, a hashed trace of a binary is compared ‘on-the-go’ with the expected one (golden
hash), we use the Platform Configuration Registers (PCR) of the TPM to store and have direct
access to it through tpm commands like PCR_Extend and policy PCR.
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- Secure Enrollment

Why do we need a Secure on-boarding?
Key creation with Trust.
Block unauthorized key usage.
How is this achieved?
Key Restriction Usage Policies:
Store pre-defined representations of
the device state in the TPM's PCRs.
Attest against all allowed software.
Establish trust between the Tracer
and the TPM.
Verify that this configuration came
from trustworthy source.
What did we achieve?
Local attestation




“ CIV'Breakdown:

The service lets the CIV Verifier (through its
Attestation Agent) request CIV traces
generation

In turn, the Prover tracer computes the
hashes over all loaded libraries and
programs in the edge device

Finally, the tracer signs the generated
traces and sends them to the Prover’s
TPM-based Wallet for verification and
signing with the produced AK

TPM Tracer Device Verifier
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“ CIV'Breakdown (2)

The AK can only sign upon approval from
the tracer, as well as holding correct PCR
CINES

In order to allow this, the tracer must sign a
nonce

This is done by starting a session and
sending the nonce to the tracer. The tracer
then signs the nonce and returns it

The client then executes PolicyPCR in the
session, to verify that we are in a correct
state

After this the tracer’s public key is loaded
into the TPM and policySigned with the
signed nonce and the loaded key is
executed

If this is a success, the PolicyOR command
can be executed successfully (as we satisfy
the signing policy), and policyAuthorize
can correctly be executed with the
authorization ticket
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Integrity of Tracer / Authentication of
Traces

¢ The Tracer is responsible for continuously monitoring the processes executed in the
device it belongs to, and collects information that is required in the context of the
attestation schemes.

4% This information can include control flow graphs used in Control-Flow Attestation (CFA),
and hashes of configuration properties used in Configuration Integrity Verification (CIV).

¢ The Tracer is executed as a user space program and needs to be added to our Trusted
Computing Base.

> |n order to prove the validity of the measurements that the TPM receives from the Tracer
and uses in the context of the implemented attestation protocols, we employ a
Pre-Installed Key

> This key will be used to send signed traces to the Verifier, who is responsible for verifying
their integrity.

> Protocol securing the integrity of the reported traces. Protects against replay attacks
and impersonation attacks, and ensures the integrity of the traces during correct
protocol execution.

© Copyright ASSURED 2020-2023 8



TPM Tracer Verifier
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Security Properties

not possible by an adversary, because every time PolicySigned is
executed, it requires the Session Nonce. The attempt of a replay

ACTlEWRCHE Sl - 12k would be detected when the TPM calculates the reference

value of the authorization digest

. . If the TSS changes the Tracer’s values that have been transmitted,
Traces integrity {48 change would be detected during the verification phase, since
the sig_;natures would not match the ones from the provided traces

Tracer’s not possible, as the adversary cannot access the Tracer's
impersonation private key and it would be unable to provide a valid signature
over the Authorization Digest

Traces
Rep i

Impersonati-
o
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Tracer's CIV Invocation

— The tracer infers the

location of each page

loaded in memory for the e S S
libraries, reads the Sashest [
content of the page, and E ::‘e: " :E;;LD:»(1:1c':51:‘3fe':ed:~,1bkg;_‘b.‘,af~:iv 7e518e3ac2457cf9d5570137de77
computes a hash of 64 arse },
bytes using the SHA-256 { ";;f‘::d""ljli‘.flde?‘lil 77b5b92a10c7a78e9fal347f42ccaB84195fc7fa584b99£f91
algorithm.

— The produced trace “wname® : "1d-2.27.s0",

thus contains a Set Of "bafhﬁf: '%ad"'facbZSE‘Gic{ve‘if}éc[ 04d7d1d16b024f5805ff7cb47c7a85dabd8b48892
hashes representing the g oo

in-memory configuration ’

of the device

228f707044edf6d3be796adccd5f3c8f993f41b036beb10£fd69d7
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