
www.project-assured.eu

Demo webinar on Attestation Primitives

Online | 31 May 2023

Alexandros Sampanis

Security Engineer

UBITECH Ltd

 Control Integrity Verification -
Attestation Scheme

https://www.project-assured.eu/

2

ASSURED Architecture Overview

WWW.PROJECT-ASSURED.EU

Control Integrity Verification

© Copyright ASSURED 2020-2023 3

This protocol is responsible for calculating the configuration of a running binary as a hash digest
so it can be used from the TPM as a key-restriction usage policy. To make sure that every time
we fetch it, a hashed trace of a binary is compared ‘on-the-go’ with the expected one (golden
hash), we use the Platform Configuration Registers (PCR) of the TPM to store and have direct
access to it through tpm commands like PCR_Extend and policy_PCR.

ASSURED Context → Enables enrolled devices to attest to their
correct configuration during run-time when requested through a
deployed attestation policy

https://www.project-assured.eu/

Key Restriction Usage
Policies

In order to integrate Local Attestation into our
scheme we exploit the key-restriction usage
policies. A Trusted Third Party (SCB) constructs a
policy digest, which will be binded with the AK.

● Load from the Platform Configuration
Registers a pre-defined correct state of the
Device (TPM2_policyPCR).

● Verify the the freshness and integrity of the the
output of the Tracer (TPM2_policyOR |
TPM2_policySIGNED).

● Use a certificate from a Trusted Third Party
(SCB) to construct the final run-time policy
Digest and gain access to the AK key
(TPM2_policyAUTHORIZE).

○ Using TPM2_policyAUTHORIZE the
protocol can support updates during
run-time.

Secure Enrollment

● Why do we need a Secure on-boarding?
● Key creation with Trust.
● Block unauthorized key usage.

● How is this achieved?
● Key Restriction Usage Policies:

1. Store pre-defined representations of
the device state in the TPM’s PCRs.

2. Attest against all allowed software.
3. Establish trust between the Tracer

and the TPM.
4. Verify that this configuration came

from trustworthy source.
● What did we achieve?

● Local attestation

TP
M

2_
PCREx

te
nd

TPM2_P
olic

yPCR

TPM2_PolicyOR

TPM2_PolicyAuthorize

CIV Breakdown

● The service lets the CIV Verifier (through its
Attestation Agent) request CIV traces
generation

● In turn, the Prover tracer computes the
hashes over all loaded libraries and
programs in the edge device

● Finally, the tracer signs the generated
traces and sends them to the Prover’s
TPM-based Wallet for verification and
signing with the produced AK

CIV Breakdown (2)

● The AK can only sign upon approval from
the tracer, as well as holding correct PCR
values

● In order to allow this, the tracer must sign a
nonce

● This is done by starting a session and
sending the nonce to the tracer. The tracer
then signs the nonce and returns it

● The client then executes PolicyPCR in the
session, to verify that we are in a correct
state

● After this the tracer’s public key is loaded
into the TPM and policySigned with the
signed nonce and the loaded key is
executed

● If this is a success, the PolicyOR command
can be executed successfully (as we satisfy
the signing policy), and policyAuthorize
can correctly be executed with the
authorization ticket

Integrity of Tracer / Authentication of
Traces

8

❖ The Tracer is responsible for continuously monitoring the processes executed in the
device it belongs to, and collects information that is required in the context of the
attestation schemes.

❖ This information can include control flow graphs used in Control-Flow Attestation (CFA),
and hashes of configuration properties used in Configuration Integrity Verification (CIV).

❖ The Tracer is executed as a user space program and needs to be added to our Trusted
Computing Base.

➢ In order to prove the validity of the measurements that the TPM receives from the Tracer
and uses in the context of the implemented attestation protocols, we employ a
Pre-Installed Key

➢ This key will be used to send signed traces to the Verifier, who is responsible for verifying
their integrity.

➢ Protocol securing the integrity of the reported traces. Protects against replay attacks
and impersonation attacks, and ensures the integrity of the traces during correct
protocol execution.

© Copyright ASSURED 2020-2023

Traces Integrity &&
Authentication

● The TPM shares with the Tracer the Attestation Key’s name.

● For every invocation of the Tracer the TPM creates a fresh
policy session and shares the session nonce.

● The Tracer then calculates an authorization digest which
includes the session nonce, the Attestation Key’s name and the
hashed traces.

● Tracer Signs the authorization digest with its private key.

● The TPM loads the Tracer’s Public Key and executes
TPM2_policySigned with the policy session that was created
specifically for this challenge.

● If the correct key was used to sign the Authorization Digest, then
the session digest should now match the policy digest of the
TPM key

● We can now use the AK to sign data from the tracer, for
verification purposes

Security Properties

10

not possible by an adversary, because every time PolicySigned is
executed, it requires the Session Nonce. The attempt of a replay
attack would be detected when the TPM calculates the reference
value of the authorization digest

Replay attacks

If the TSS changes the Tracer’s values that have been transmitted,
this change would be detected during the verification phase, since
the signatures would not match the ones from the provided traces

Traces integrity

not possible, as the adversary cannot access the Tracer's
private key and it would be unable to provide a valid signature
over the Authorization Digest

Tracer’s
impersonation

Replay attacks
Traces

integrity

Impersonati-
on Attacks

© Copyright ASSURED 2020-2023

Tracer’s CIV Invocation

11

→ The tracer infers the
location of each page
loaded in memory for the
libraries, reads the
content of the page, and
computes a hash of 64
bytes using the SHA-256
algorithm.
→ The produced trace
thus contains a set of
hashes representing the
in-memory configuration
of the device

Representation

© Copyright ASSURED 2020-2023

ASSURED project is funded by the EU’s Horizon2020
programme under Grant Agreement number 952697

PROJECT-ASSURED.EU @Project_Assured

THANKS

https://www.project-assured.eu/
https://www.project-assured.eu/
https://twitter.com/Project_Assured
https://twitter.com/Project_Assured

