
Eff icient and Scalable Fuzzing
of Complex Software Stacks
Prof. Thorsten Holz

1

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Recent Research

2

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Fuzzing Overview

3

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Fuzzing Overview

3

Miller: http://pages.cs.wisc.edu/~bart/fuzz/ (1988)

http://pages.cs.wisc.edu/~bart/fuzz/

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Coverage-Guided Fuzzing

4

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Coverage-Guided Fuzzing

5

NYX / NYX-Net

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Fuzzing Overview

7

user
space

user
space

kernel

user
space

kernelkernel

Nyx (USENIX’21) + Nyx-Net (EuroSys’22)

Intel PT (Processor Trace)h
tt

p
s:

//g
it

h
u

b
.c

om
/R

U
B

-S
ys

Se
c/

https://github.com/RUB-SysSec/

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Efficient State-Machine Exploration

8

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Efficient State-Machine Exploration

8

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Snapshot-based Fuzzing

9

Sc
hu

m
ilo

 e
t

al
.: “

N
yx

-N
et

: N
et

w
or

k
Fu

zz
in

g
w

ith
 In

cr
em

en
ta

l S
na

ps
ho

ts
”,

Eu
ro

Sy
s’

22

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Snapshot-based Fuzzing

9

Sc
hu

m
ilo

 e
t

al
.: “

N
yx

-N
et

: N
et

w
or

k
Fu

zz
in

g
w

ith
 In

cr
em

en
ta

l S
na

ps
ho

ts
”,

Eu
ro

Sy
s’

22

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Snapshot-based Fuzzing

9

Sc
hu

m
ilo

 e
t

al
.: “

N
yx

-N
et

: N
et

w
or

k
Fu

zz
in

g
w

ith
 In

cr
em

en
ta

l S
na

ps
ho

ts
”,

Eu
ro

Sy
s’

22

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Snapshot-based Fuzzing

9

Sc
hu

m
ilo

 e
t

al
.: “

N
yx

-N
et

: N
et

w
or

k
Fu

zz
in

g
w

ith
 In

cr
em

en
ta

l S
na

ps
ho

ts
”,

Eu
ro

Sy
s’

22

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Fuzzing Firefox with Nyx-Net

10

kernelkernelkernel

Nyx (USENIX’21) + Nyx-Net (EuroSys’22)

Intel PT (Processor Trace)

h
tt

p
s:

//n
yx

-f
u

zz
.c

om
/

https://nyx-fuzz.com/

Drone Security

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide # 12

DJI Drones

DJI Universal Markup Language
(DUML)

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Security Assessment

13

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

Fuzzing Drones

14

Fuzztruction

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Pairs of programs encode domain knowledge about
given protocol

• Generator generates content (e.g., generate PDF file or
encrypted message)

• Consumer processes content (e.g., display PDF file or
decrypt encrypted message)

Motivation

17

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Pairs of programs encode domain knowledge about
given protocol

• Generator generates content (e.g., generate PDF file or
encrypted message)

• Consumer processes content (e.g., display PDF file or
decrypt encrypted message)

▪ How can we efficiently test such programs without
domain knowledge?

▪ Basic insight: we can use generator for input generation

Motivation

17

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Randomly flipping instruction bits in generator would
not affect output and—even worse—lead to crashes

▪ Compile-time analysis to identify operations on data and
filter out crashing operations

• Analyze data-flow dependencies to avoid redundant
mutations

▪ Instrument generator and just-in-time (JIT)-compile
both tracing and mutation mechanisms

Intuition

18

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide # 19

Overview

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Loosely Structured Formats (objdump, readelf)

▪ Complex Formats (pngtopng, unzip, 7zip, and pdftotext)

▪ Cryptographic Formats (OpenSSL’s dsa and rsa, and
Mozilla NSS’ vfychain)

Results

20

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Loosely Structured Formats (objdump, readelf)

▪ Complex Formats (pngtopng, unzip, 7zip, and pdftotext)

▪ Cryptographic Formats (OpenSSL’s dsa and rsa, and
Mozilla NSS’ vfychain)

Results

20

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Loosely Structured Formats (objdump, readelf)

▪ Complex Formats (pngtopng, unzip, 7zip, and pdftotext)

▪ Cryptographic Formats (OpenSSL’s dsa and rsa, and
Mozilla NSS’ vfychain)

Results

20

Summary & Outlook

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide # 22

Trophy Cases

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Efficiently fuzz deeper parts of the compute stack

• UEFI? SMM / SMI handler? MSRs? ISA? Pre-silicon?

Towards Secure Systems

23

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Efficiently fuzz deeper parts of the compute stack

• UEFI? SMM / SMI handler? MSRs? ISA? Pre-silicon?

▪ Machine learning to the rescue?

• Can we reuse knowledge from previous fuzzing
campaigns?

• Can we use LLMs to generate interesting inputs?

Towards Secure Systems

23

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Efficiently fuzz deeper parts of the compute stack

• UEFI? SMM / SMI handler? MSRs? ISA? Pre-silicon?

▪ Machine learning to the rescue?

• Can we reuse knowledge from previous fuzzing
campaigns?

• Can we use LLMs to generate interesting inputs?

▪ How to handle all the bugs founds?

• Automated root cause analysis

• Automated patching of found vulnerabilities

Towards Secure Systems

23

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

▪ Bars et al.: “Fuzztruction: Using Fault Injection-based Fuzzing to Leverage
Implicit Domain Knowledge”, USENIX Security’23

▪ Schiller et al.: “Drone Security and the Mysterious Case of DJI's DroneID“,
NDSS’23

▪ Schumilo et al.: “Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and
Affine Types”, USENIX Security’21

▪ Schumilo et al.: “Nyx-Net: Network Fuzzing with Incremental Snapshots“,
EuroSys’22

▪ Aschermann et al.: “IJON: Exploring Deep State Spaces via Fuzzing”, IEEE
S&P’20

▪ Aschermann et al.: “Nautilus: Fishing for Deep Bugs with Grammars”, NDSS’19
▪ Blazytko et al.: “Grimoire: Synthesizing Structure while Fuzzing”, USENIX

Security’19
▪ Aschermann et al.: “Redqueen: Fuzzing with Input-to-State Correspondence”,

NDSS’19

References

24

Efficient and Scalable Fuzzing of Complex Software Stacks | Slide #

In this talk, I will give an overview of our recent progress in
randomized testing (“fuzzing”) and present some of the methods
we have developed in the last few years. These include fuzzing of
operating system kernels and hypervisors, grammar-based
fuzzing of complex interpreters, and fuzz testing of embedded
systems. The talk will focus on our recent work on Fuzztruction, a
novel perspective on generating inputs in highly complex formats
without relying on heavyweight program analysis techniques,
coarse-grained grammar approximation, or a human domain
expert. I will conclude the talk with an outlook on challenges yet
to be solved.

Abstract

25

