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Miller: http://pages.cs.wisc.edu/~bart/fuzz/ (1988)

http://pages.cs.wisc.edu/~bart/fuzz/
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DJI Drones

DJI Universal Markup Language  
(DUML)
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• Consumer processes content (e.g., display PDF file or 
decrypt encrypted message)
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▪ Pairs of programs encode domain knowledge about 
given protocol 

• Generator generates content (e.g., generate PDF file or 
encrypted message) 

• Consumer processes content (e.g., display PDF file or 
decrypt encrypted message)

▪ How can we efficiently test such programs without 
domain knowledge?

▪ Basic insight: we can use generator for input generation

Motivation

17



Efficient and Scalable Fuzzing of Complex Software Stacks  |  Slide # 

▪ Randomly flipping instruction bits in generator would 
not affect output and—even worse—lead to crashes 

▪ Compile-time analysis to identify operations on data and 
filter out crashing operations 

• Analyze data-flow dependencies to avoid redundant 
mutations 

▪ Instrument generator and just-in-time (JIT)-compile 
both tracing and mutation mechanisms

Intuition
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▪ Loosely Structured Formats (objdump, readelf) 

▪ Complex Formats (pngtopng, unzip, 7zip, and pdftotext) 

▪ Cryptographic Formats (OpenSSL’s dsa and rsa, and 
Mozilla NSS’ vfychain)

Results
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Trophy Cases
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▪ Efficiently fuzz deeper parts of the compute stack 

• UEFI? SMM / SMI handler? MSRs? ISA? Pre-silicon?

Towards Secure Systems
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▪ Efficiently fuzz deeper parts of the compute stack 

• UEFI? SMM / SMI handler? MSRs? ISA? Pre-silicon?

▪ Machine learning to the rescue? 

• Can we reuse knowledge from previous fuzzing 
campaigns? 

• Can we use LLMs to generate interesting inputs?

▪ How to handle all the bugs founds? 

• Automated root cause analysis 

• Automated patching of found vulnerabilities

Towards Secure Systems
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In this talk, I will give an overview of our recent progress in 
randomized testing (“fuzzing”) and present some of the methods 
we have developed in the last few years. These include fuzzing of 
operating system kernels and hypervisors, grammar-based 
fuzzing of complex interpreters, and fuzz testing of embedded 
systems. The talk will focus on our recent work on Fuzztruction, a 
novel perspective on generating inputs in highly complex formats 
without relying on heavyweight program analysis techniques, 
coarse-grained grammar approximation, or a human domain 
expert. I will conclude the talk with an outlook on challenges yet 
to be solved.

Abstract
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