
Huawei Confidential1

Trusted Environments for Future Consumer Devices

Dr. Jan-Erik Ekberg

Assure Workshop

25.4 2023

➢ What is a TEE? Why is important?

➢ Hardware Evolution

➢ Attestation

➢ Runtime(s) and Code Development

➢ Opportunities and Research

Huawei Confidential2

Secure Environments in Mobile Phones – since 2008 or so

➢ Hardware-assisted isolated computing (Processor Secure Environments) came to be via a few detours through a technology
called Arm TrustZone. This was a time where nothing similar had been deployed yet. Argument: Costs less than 1 cent.

➢ As smart card (provisioning) and smart card terminals was standardized
by the GlobalPlatform consortium, the same organization undertook
the standardization of these new secure environments – named
Trusted Execution Environments (TEEs)

Memory
area 2

Memory area 1

Firewall

se
cu

rity
 m

o
d

e

ARM CPU

X

Mode switch

OS 1

App App App

(Trusted) OS 2

App App App

Processor Secure Environment

non-secure secure

(Trusted) OS 2

App
(TA)

App App

GP internal API

Libc with
strong
crypto
focus

GP Trusted UI

GP Sockets

GP SE interface

OS 1
GP API

App starting
App I/O (shared mem.)
Remote provisioning

GP+IETF: OTrP / TEEP

Remote provisioning of apps
from TSM

App
(CA)

GP TEE Architecture

Properties of the GP TEE architecture (with ARM TZ)

➢ Trusted applications are primarily authorized by origin. I.e. Only
applications from trusted / approved source (signed by an approved
party) are allowed to run.

➢ The TEE kernel is a singleton, i.e. there is a secure mode that at large
mirrors the standard OS. All trusted apps run on the same kernel, and
e.g. secure drivers and interfaces are managed by the TEE kernel

➢ With few exceptions, TEE implementations are passive, i.e. they are
invoked by a control thread from the rich enviroment, and run only
as long as needed. In theory the architectur does not inhibit active operation.

➢ The architecture (e.g. for I/O) assumes that secure mode has non-secure
memory access. Also no memory encryption was considered when this
standard evolved.

➢ All code and interfaces are C. No binary compatibility (across manufacturers)

S
e
cu

re
 b

o
o

t fo
r se

tu
p

Huawei Confidential3

… and the use of TEE can be considered a success in phones

➢ Operator-related services like SIMLock, IMEI, OMA DRM

➢ Android hardware-backed keystore and keymaster (3rd party support)

➢ TenCent / WeChat Pay -- 500 million active TEE customers

➢ Most manufacturers rely partially on TEE for system protection like
run-time protection, attestation, KIP / HKIP / EIMA ..

Since 2020, a combination of a TEE and an eSE / hardware trust root has become the norm in upscale phones – TEEs are not very side-channel resistant, and some
services with keys (credit cards, secure boot, attestation) is better done with this combination (Apple SEP, Samsung eSE, Huawei iSE, MSP)

https://www.trustonic.com/news/riscure-and-trustonic-achieve-the-first-eal-5-tee-certificate/

https://globalplatform.org/wp-content/uploads/2018/05/
Introduction-to-Trusted-Execution-Environment-15May2018.pdf

With Billions of devices deployed and in use, TEE is one of the most used secure environments in the world, overshadowed by
smart cards only. However, the ecosystem aspect – ability for 3rd parties to develop and deploy their own secure applications
has never materialized, and likely will not any more.

Services run from / with the TEE

Ekberg, Jan-Erik, Kari Kostiainen, and N. Asokan.
"The untapped potential of trusted execution environments on mobile devices." IEEE Security & Privacy 12.4 (2014): 29-37.

TEE + SE

Huawei Confidential4

TEE terminology
➢ Trusted Execution Environments, i.e. hardware-assisted isolated computing in the CPU cores, were first deployed in

mobile phones, using Arm TrustZone. These environments in consumer devices (since around 2010) have always been
called TEEs

➢ When Intel around 2015 launched SGX, for PCs and later in servers, they introduced the term enclave, or Secure Enclaves,
for the same structure, i.e. where security-critical parts of a workload is run in hardware-assisted isolation. In servers, also
the term Secure Virtual Machines (VM) has been used. Recent hardware technologies for TEEs include iTDX, AMD-SEV
and ARM-CCA

Cloud / Edge

TEE TEE TEE

Confidential Computing

When TEE work is
outsourced to the
cloud, in a way
where the cloud
operator should not
learn about the secrets
used or the results
produced – we call
this confidential
computing

Cloud / Edge

Trusted Execution
When TEE work is
outsourced to a
consumer device
(e.g. payment
algorithm or eID)
where the user
should not learn
about the secrets
used or the results
produced – we call
this trusted execution

Bank
$

TEETEE
TEE

Fundamentally:
A cat is a cat is a cat TEE

Secure part of
workload

Normal
Insecure part of
workload

HW support and TCB

Service

AI store

… but there is an argument for
mobile phones to leverage
Confidential Computing
TEE design patterns

Huawei Confidential5

So – why change a working setup ?
The GP TEE hardware and software stack is showing its age compared to alternative solutions:

➢ Intel SGX (user-space enclaves) showed that 3rd-party ecosystem building is possible.
Yes, it had its problems, but spawned much more recognition, research contribution and
eventually also attack contribution.

➢After GP/A-TZ and iSGX, most enclave solutions choose to assert code integrity based
on code attestation rather than on origin validation.

➢SGX and more modern VM-based enclaves show that the Trusted Computing Base (TCB)
of a secure workload can be almost completely done in hardware. In GP setups, the OS kernel code can easily be several 10s of
MB, and this is a huge attack surface (almost all published TEE attacks rely on bugs in the TEE software)

➢The memory allocations of ARM-TZ and GP-TEE are static, since firewalls, memory assignments etc. are fixed at boot. Ideally,
memory is consumed by secure workloads only when they are running / used. With more flexibility, also more complex secure
workloads can be implemented (machine learning, face recognition)

➢ Gigantic TCB (10+ MB)
➢ No memory encryption
➢ Context switch latency high
➢ Memory statically reserved
➢ TA resources limited

(Working HW driver support –
NS bit on bus)

➢ Minimal TCB
➢ Isolation with memory encryption
➢ Low latency context switch
➢ Memory reserved as needed
➢ TA resources almost unlimited

(how to do drivers? Trust mechanism?
Do we need to revisit sofware stack?)

GP+ ARM TZ
TEE

Ideal end state ?

What can we
learn from CC ?

In this talk I argue for a new TEE model also for consumer devices!

Huawei Confidential6

Hardware

Huawei Confidential7

Hardware support “today”

Secure Monitor PMP (fw-phy)

Linux Kernel

Machine Mode

Supervisor

User
Workload

(CA)
Workload

(CA)

runtime

Secure
Workload

(TA)

Enclave

runtime

Secure
Workload

(TA)

Host

The Keystone project (MIT, Berkeley)
No memory encryption
Virtualization Extensions (Hypervisor) coming
Drivers with Composite Enclaves *)
Or more full-scale enclave overhaul with CSEE **)

RISC-V

Enclave

*) ETH Zurich: Composite Enclaves (IACR Trans on CH&ES) https://arxiv.org/pdf/2010.10416.pdf
**) TUDarmstadt (Usenix 21): CURE https://www.usenix.org/system/files/sec21-bahmani.pdf
***) TUDarmstadt (NDSS 19): Sanctuary https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01A-1_Brasser_paper.pdf

Trusted Firmware

Secure microvisor

Linux Kernel

EL3

Workload
(CA)

Workload
(CA)

runtime

Secure
Workload

(TA)

Enclave

runtime

Secure
Workload

(TA)

Host

SEL2 added in ARMAv8.4. No mem. encryption
***) Other ways of fiddling with FW: Sanctuary

AMD-SEV

Enclave
TZ-ASC

Hypervisor (?)EL2

EL1

EL0

mem
TZASC

SEV Firmware

Linux Kernel

Ring -1*

Workload
(CA)

Workload
(CA)

Host

Hypervisor (?)

Ring 0

Ring 3

ARM 8.4

Ring 0

AMD PSP

Trust roots / mem encryption tweaks. Max 16/32 tweaks
PSP originated device / enclave attestation

runtime

Secure
Workload

(TA)

Enclave

runtime

Secure
Workload

(TA)

Enclave

Mem. Encr. HW

Intel TDX

TDX Firmware

Linux Kernel

Ring -1*

Workload
(CA)

Workload
(CA)

Host

Hypervisor (?)

Ring 0

Ring 3

Ring 0

Intel ME

runtime

Secure
Workload

(TA)

Enclave

TDX VM

Attestation
enclave

MKTME

Attestation moved to a BIOS-setup enclave
Infinite number of enclave keys

A
R

M
 &

 R
IS

C
-V

 m
o

st
 l
ik

e
ly

 c
o

n
su

m
e
r

d
e
vi

ce
 c

o
re

s

T
h

e
se

 so
lu

tio
n

s co
m

e
 to

 th
e
 ta

b
le

 fro
m

 clo
u

d
 / Lin

u
x C

C
 p

e
rsp

e
ctive

https://arxiv.org/pdf/2010.10416.pdf
https://www.usenix.org/system/files/sec21-bahmani.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01A-1_Brasser_paper.pdf

Huawei Confidential8

Learnings from (RISC-V) Enclave Research

*) ETH Zurich: Composite Enclaves (IACR Trans on CH&ES) https://arxiv.org/pdf/2010.10416.pdf
**) TUDarmstadt (Usenix 21): CURE https://www.usenix.org/system/files/sec21-bahmani.pdf
***) Huawei (TrustCom 2022): Trusted Hart https://arxiv.org/pdf/2211.10299.pdf

Secure Monitor PMP

Linux Kernel

Machine Mode

Supervisor

User
Workload

(CA)
Workload

(CA)

runtime

Secure
Workload

(TA)

Enclave

runtime

Secure
Workload

(TA)

Host

Composite Enclaves *)

Enclave

Device (SD, keyboard)

mem

➢ We need some ways to do drivers in VM enclave settings
➢ Composite enclaves focuses on exactly this – how do we segment

physical memory in a secure way for communicating enclaves
and enclaves communicating with external hardware

➢ The ´composition´ comes from several enclaves serving as one

CURE **)

Linux Kernel

Workload
(CA)

Workload
(CA)

runtime

Secure
Workload

(TA)

Enclave

runtime

Secure
Workload

(TA)

Host Enclave

mem

idid

bus
Arbiter (FW)

Arbiter (FW)

dev1 .. devn

CPU

➢ Holistic, hardware-based enclave design
➢ Based on enclave idenfication in CPU, caches and firewalls (arbiters) cooperate
➢ Allows different kinds of enclaves to be constructed (user-space, VM, kernel, ..)
➢ Side-channel protection (cache-way separation) + mem. encryption integrated

Trusted Hart ***)

➢ Software forward-port of the GP-TEE
ecosystem onto an enclave scenario

➢ Define the role of the trusted component (RoT)
as a provider of attestation, keystore and
access control arbiter

➢ The HW RoT approach has been prevalent in
mobile devices for several years (Apple SEP,
Huawei MSP, ..), and is visible also in CC
(ARM HES, AMD PSP., ..)

All of these works
put high emphasis on
the role and function
of attestation. We will
come to that later

Secure Monitor PMP

Linux Kernel

Machine Mode

Supervisor

User
Workload

(CA)
Workload

(CA)

GP internal

Secure
Workload

(TA)

Enclave

GP Internal

Secure
Workload

(TA)

Host
Enclave

GP API

runtime

K
e
y
st

o
re

´Trusted Hart’

A
tt

e
st

a
ti

o
n

S
ta

te

https://arxiv.org/pdf/2010.10416.pdf
https://www.usenix.org/system/files/sec21-bahmani.pdf
https://arxiv.org/pdf/2211.10299.pdf

Huawei Confidential9

And for Mobile Phones – the N.G. architecture, ARM CCA

ARM-TF

Boot-up

CCA mode-B (root)

ARM-RMM

CCA mode R CCA mode NS

M
e
m

o
ry

 e
n

cr
yp

ti
o

n

runtime

Secure
Workload

(TA)

Host

HHEEEL2

OS / Linux

SEL2 ARM-SPM

TEE kernel

GP-TA

CCA mode S

Certified (formally proven?) open-source code from ARM

SEL1

GP-TA

GP-TA GP-TA

SEL0

EL1

Apps

eSE / HES

Enclave

runtime

Secure
Workload

(TA)

Enclave

ARMA-v9.2 ?

REL2

REL1

Apps Apps

Functional ArchitectureHardware Architecture

GPC Granule
Protection Check

PA Physical Address

ASID
NS

Memory access available (?)

Processor world state:
EL3 (root), Realm, Secure, Non-secure

VMID
NS

Stage 2

Stage 1
One memory
translation regime
per privilege level
and world state

NS-bit
in Realm
controls
memory
encryption

Bus. Only NS bit exposed

Linaro ARM talk (21): https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
J Weidner, CCA overview: https://sys.cs.fau.de/extern/lehre/ws22/akss/material/arm-cca.pdf

GPC also done at DMA
controller. Adress domain
specific encryption done
in memory controller

➢ An architecture that to large extent follows in the footsteps of AMD-SEV and Intel TDX. I.e. to provide isolation + VM
memory encryption to isolate from access. Logically, this extends dual-world TZ to a three(+one) world arrangement

➢ Contains a root mode, i.e. EL3. Since translations and GPC are memory based, nothing else makes really sense. Rest of the
required isolation can be made by translation rules and protection of the translation tables.

➢ Not yet clear how this extends to the device regime. NS bit is already on the bus, virtual drivers might be achievable via
secure world, but DMA protection is not part of CCA for now.

➢ Trust roots inherited from ARM PSA architecture / HES is an abstract hardware trust root

https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://sys.cs.fau.de/extern/lehre/ws22/akss/material/arm-cca.pdf

Huawei Confidential10

About Performance

*) TUDarmstadt (SigSac 19) https://www.usenix.org/system/files/sec21-bahmani.pdf
**) Tromsö Uni (IoTBDS 21) https://pdfs.semanticscholar.org/fa08/a6499998b83d548f8dc079343dbcdd767474.pdf
***) Tsinghua Uni (WISA 16) https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7878255
****) Ohio State (IEEE S&P 22) https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833694

ARMAv7 (Broadcom BCM2836 900MHz) CPU

Mode switch

OS 1

App

C-FLAT

non-secure

➢ C-FLAT *); Bare-metal measurements for Arm TrustZone only
including context switch, related register stores, TLB flushes and
minimal logic: 237 μs per transaction. Measured at 900 MHz. I.e.,
no TEE OS used

➢ Secure Edge Computing **): OP-TEE NOP operation (GP-TEE
interface, ping-pong, 82 μs per transaction. Measured at 1.2 GHz

App

OP-TEE*)

**)

ARMAv8 (Broadcom, Cortex A53) CPU

ARM-TZ

Intel SGX

App enclave

ecall

ocall

➢ On SGX perf ***); Ecall + Ocall every 16000 instructions → overhead 120% (7000
cycles/ecall) Baseline transactional measurements with no memory use (since SGX encrypts
memory, increased bandwidth slows down operation). Similar measurements ****) puts
an empty Ecall at the same ballpark: 9.3 μs Intel Core i5-6200U SGX, 2.4GHZ

VM-based

➢ Huawei measurements with Google Hafnium microvisor + FreeRTOS runtime +
WASM interpreter (Kunpeng 920 / ARMAv8, 2GHz): 6.4 μs, stddev 1.7 μs

➢ AMD-SEV measurements on am 2 GHz AMD EPYC 7251 for emulating SGX on SEV ****)
(which is not an ideal comparison) puts enclave entry latency at around 100-200 μs

https://www.usenix.org/system/files/sec21-bahmani.pdf
https://pdfs.semanticscholar.org/fa08/a6499998b83d548f8dc079343dbcdd767474.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7878255
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833694

Huawei Confidential11

Code Provisioning / Attestation

Huawei Confidential12

Trusted
Service Manager

➢ Endpoint devices are not necessarily uniquely identifiable

➢ Endpoint devices come pre-provisioned with a security domain, i.e. secret key material to which
code / data can be encrypted. Sometimes identification is bound to key injection with the domain

➢ Endpoint devices come pre-provisioned with trust roots, and TEE execution and data injection is
conditioned to trust root signatures. For symmetric-key security domains (sec.dom==trust root)

➢ Applications have a UUID, that e.g. match them to their respective storage. GP UUIDv5 is code-
hash based

Business logic: Trusted applications (TAs) are vetted in source (certified), and only certified
binaries and secrets (signed by trust root) are allowed to run in TEE

Secrets Provisioning (in GP)

The GP standards (TEE and smart cards) have successfully followed the following provisioning paradigm:

TEEVerification

Trust Root

Decryption

Sec. Domain

TEE

sign

Encrypted
code

Encrypted
code

Code
I/O

APP

TEE Management Framework: https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_MgmtFramework_v1.0_PublicRelease.pdf
Open Trust Protocol: https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol/

OTrP

TEE

Mutually
authenticated
secure channel

Developer
Sec. Domain

Trusted
Service Manager

TMF – ASN.1 (PKI-style)

TEE

Mutually
authenticated
secure channel

Developer

Sec. Domain

authorization Trust root

sign

Encrypted
code

Offline
provisioning

https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_MgmtFramework_v1.0_PublicRelease.pdf
https://globalplatform.org/specs-library/tee-management-framework-open-trust-protocol/

Huawei Confidential13

Secrets Provisioning Going Forward
Neither GP-TEE 3rd-party development OR SGX deployment models have really taken off, one can potentially attribute this to the
business model, which essentially is closed. Developers need authority interaction to get their code deployed, and the authorities are
fragmented across ecosystems

Confidential Computing solutions predominantly stock an open provisioning model,
in the following spirit:

ObC Nokia, AsiaCCS 2009: https://dl.acm.org/doi/pdf/10.1145/1533057.1533074

➢ Endpoint devices are able to provide platform attestation up to
and including the TEE workload – to anyone who asks. OEM/ODM
is the trust root

➢ Endpoints provide storage or TEE-workload-local keys for all
workloads

➢ Workload identity is in practice the TEE workload hash / imprint

Business logic: Anyone can run a TA in a TEE. TEE sandbox is strong enough to curtail attacks
from TA. The source of the TA is responsible for attesting viability of TEE
platform. TEE trust roots are provided by platform and implicitly trusted

The open provisioning model dates back to around 2010

Trust Root

TEE

APP

TEE Code

TEE Code

Attestation

TEE
Code ?

Step 1: Establish Context

verify

trusted channel?

Trusted Sockets Layer (NordSec 21) https://events.tuni.fi/uploads/2021/12/fc3718db-nordsec21-paper7-slides.pdf

Trust Root

TEE

APP

TEE Code

Step 2: Operate

Key injection?

Storage

CryptoRNG

Secure
Platform
Services

Huawei Confidential14

The Problem(s) of Device / TEE Attestation
For closed system attestation, decades of academic work is available to find out the optimal attestation metric, method and security
level. However, what is missing for TEE is a unified method that can work across devices, device types and trust roots

Towards Interoperable Enclave Attestation (Fruct 22) https://ieeexplore.ieee.org/abstract/document/9770907

The IETF RATS (+TCG) attestation framework

Most academic work
focuses only on metrics
and related crypto

Possible metrics

Platform Attestation in Consumer Devices (in submission)

Architectural Differences

SGX: Enclaves locally attested
by CPU + microcode. Intel-
provided Quoting Enclave
signs attestation evidence.
(attestation as a business)

SEV: VM enclaves directly
attested by discrete security
processor (AMD-SP).

CCA: Hierarchically layered
attestation. Three CPU-isolated
worlds (realm, non-secure and
root), each with multiple
privilege levels. Discrete
HW (HES) at root

Attestation and RoT Alternatives
➢ A Trusted Execution Environments (TEE). is commonly defined as an environment that provides a level of assurance of data integrity, data

confidentiality, and code integrity. For this assurance to take place, we need to consider attestation as a service

Some attestation models

➢ The Linux CC consortium (and others) work to harmonize and standardize all interfaces and functionalities for
confidential computing

➢ The TEE environment will need a root-of-trust to host system keys and to provide attestation services. But
not only that, there needs to be protocol support in the OS, and some service to verify the attestation claims

Passport model

Attestation / RoT alternatives

TEE

RoT

TPM eSE MSP
(Huawei)

HES
(Arm)

Titan
(Google)

SEP
(Apple)

Caliptra

TZ /
TZ-M

PSP
(AMD)

✓ Static device attestation
✓ Secure Boot
✓ Key-store

Run-time attestation and system services

HUKS

SecGuard
(HOS)

PKCS#11 / 15

TPM audit logs

(E)IMA

SafetyNet
(Android)

MARS
DICE

PSA
(Arm)

✓ Run-time attestation
✓ Key attestation
✓ Certificate Enrolment
✓ OTA mgmt (enterprise)

Cloud services

CA SafetyNet Veraison SecGuard

Privacy CA
ActiveDir

(MS)

Cloud

OS (Kernel)

MARS SGX

Background check

Relying party collects evidence
checks with verifier later

(Signed) verification result is presented by
attester to relying party after the fact

Trusted channel w. attestation

Protocol binding, resulting in
shared secret AND attestation

Bundled model

(Signed) endorsements provided in-line
with attestation (peer-peer ?)

Proxy model

Verification happens / is translated
by background service

HSM

Veraison (ARM-CCA) Attestation
To move towards a common baseline for TEE attestation, our team in Huawei has worked in project Veraison, Linux CC, led by ARM Ltd.
”If each deployment needs a custom [attestation service], there is a significant software barrier and hence cost of entry to establishing a system that can
be used in a secure manner. Veraison aims to provide consistency and convenience to solving this problem by building software components that can be
used to build Attestation Verification Services. The components encompass a core structure
of verification and provisioning pipelines”*)

Attester
(Secure Enclave)

Verifier
(Veraison verification

service)

Endorser
(PKI base)

Reference Value
Provider (Metrics)

Manufacturer

Endorsements, metrics
(ahead of time)

Relying party
(comm. partner)

Evidence result

All interfaces
and data formats
standardized

In IETF RATS terms, Veraison attempts to become
the unified interface for endorsement collection
and evidence validation

Veraison verification in 3+1 ways

1) Securing
cloud
workloads
with
enclaves Enclave

EnclaveSecure
Enclave

HSM

Enclave
EnclaveSecure

Enclave

Veraison

Cloud Service

Enclave
Enclave

netFlix

Content

Attester

Relying party

Verifier

2) Securing
terminal
devices
enclaves

Veraison

TPM: Secure
Enclave

Router

Attester Relying party

Verifier

3) Securing
enclaves
peer-peer
(migration)

CCA Secure
Enclave

Veraison

Attester
Relying party

CCA Secure
Enclave

Verifier

+1) Authenticated
enclave
execution

VeraisonDevice

CCA Secure
Enclave

Application

Attester

Relying party Verifier
Start

Veraison work builds on existing,
standardized attestation formats:

1. CWT (IETF): RFC8392
2. JWT (IETF): RFC7519

Standard used for representing
claims to be transferred between
attester & verifier.

CDDL : Concise Data Definition
Language : RFC8610

Language to define claims
independent of encoding language.

CBOR Object Signing and
Encryption RFC8152

Standard that defines how to
encode signatures & keys in CBOR.

RATS-PSA : IETF-RATS-PSA-
Attestation RATS-EAT: IETF-EAT

Describes the exact syntax and
semantics of the attestation claims.

Attestation results for secure
interactions : Attestation
Appraisal

Standard on how verification result
(appraisal) can be represented.

Concise representations of
reference values for supply chain
1. CORIM : Concise Reference

Integrity Manifest
2. COSWID: Concise Software

Identification Tags
3. COMID: Concise Module

Identifiers

CORIM: Trustworthy bundles of
CoMID and CoSWID, signed by
supply chain manufactures.
COMID: Are the "hardware
component" complement.
COSWID: Structure to identify and
describe individual software
components, patches etc..

Verification pipeline

Veraison Software Architecture

Attester API
Decode

P
S

A

T
P

M

Crypto
validation

D
B

Endorsement
check

D
B

Appraisal
(policy)

Result
(Sign)

Relying
party

API
Decode

P
S

A

T
P

M

Endor_
sement Provisioning

pipeline

Endorser
+Reference
value provider

https://github.com/veraison

https://datatracker.ietf.org/doc/html/rfc8392
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/draft-tschofenig-rats-psa-token
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-01
https://www.ietf.org/archive/id/draft-ietf-rats-ar4si-00.html
https://www.ietf.org/archive/id/draft-birkholz-rats-corim-01.html
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-20.txt

Huawei Confidential17

Runtimes and TEE Code Development

Huawei Confidential18

New Hardware-new Runtime ?

Monitor / Harness Firewall

Linux Kernel

Workload
(CA)

runtime

Secure
Workload

(TA)

Enclave

runtime

Secure
Workload

(TA)

Host

VM-based enclaves

Enclave

Trusted Firmware

TEE OS

Linux Kernel

Workload
(CA)

Lib

Binary code

TA

Lib

Interface

Driver
TZ-ASC

TrustZone

Secure
Hardware

➢ In GlobalPlatform TEE, the singular TEE kernel is running at a higher privilege level, and
just like a normal OS, it provides TA-TA and TA-kernel isolation using memory management,
access control to OS resources like drivers, static and run-time attestation of TAs as well as
TEE-specific services secure storage, key-store access. At a high TCB cost, with a single SDK.

➢ For VM-based enclaves, the setting is different. The hardware isolation is done at hypervisor-
level, but we want minimize TCB and let hypervisor/microvisor only handle VM-VM isolation.
By default this is suitable for full cloud VM Confidential Compute (say a Linux VM running in
isolation), but to transition the consumer-device TA to this architecture we must re-architect:

➢Having one full OS kernel in each enclave is wasting memory, if individual TA workloads
are small

➢The run-time must handle at least part of providing service and attestation / access
control to drivers – therefore TA-runtime isolation is important

➢At the same time, allowing for TA workloads written in different languages and regimes
(SDKs) might make sense, especially since strict memory usage limits can be lifted

➢Driver (secure hardware) support is a feature required in consumer devices - more than in CC

➢GP (5-7 Billion) device (and TA) legacy must be accounted for as part of the software stack. What is the migration path ?

➢Memory protection of run-time code - in software (Rust ?) or in hardware (ARM PA/MTE/BTI/..) may be a wise choice
in a re-write

S
e
cu

ri
ty

 c
o

n
tr

o
l

???

???

Huawei Confidential19

Harness

WebAssembly Interpreter as a TEE Runtime Component
➢The WebAssembly (WASM) virtual hardware description, provides *) a memory-safe, sandboxed execution environment e.g. for

browsers, but increasingly available also for embedded and stand-alone use.

➢Using WASM in TEE has been proposed in recent years **) - ****) , primarily as a sandbox, to isolate the TEE workload from being
a danger to its environment (the TEE). Additional advantages is a coherent interface specification (WASI) to the platform, which
allows for easy integration of e.g. access control or service APIs.

➢The isolation aspect of WASM is however overrated, i.e. there is little protection against in-workload memory safety, which badly
reflects on security if JIT compilation is used. Further hardening of the WASM runtime is needed for TEE use.

➢WASM LLVM backend immediately allows TA writing in C, Rust, Java, Pascal, … any language
for which a front-end exists

*) WASM: https://webassembly.org
**) WaTZ, Uni. Of Neuchatel (IEEE ICDCS 22): https://arxiv.org/pdf/2206.08722.pdf

***) TWINE, Uni. Of Neuchatel (ICDE 21): https://www.researchgate.net/profile/Valerio-Schiavoni/publication/350512786_Twine_An_Embedded_Trusted_Runtime_for_WebAssembly/links/60743fbaa6fdcc5f779d0c1a/Twine-An-Embedded-Trusted-Runtime-for-WebAssembly.pdf

****) AccTEE, TU Braunschweig (int. Middleware Conf. 20): https://dl.acm.org/doi/pdf/10.1145/3361525.3361541

https://blog.scottlogic.com/2021/06/21/state-of-wasm.html

I/O

HSSL implemented software architecture

M.Sc https://www.utupub.fi/bitstream/handle/10024/152762/
Pop_VasileAdrianBogdan_Thesis.pdf?sequence=1

Mem. setup
measurem

ents

keystore

attestation

Sec.Env

Driver /
multi-

enclave AC

Trust Root

Integrity, secure boot, measurements

Enclave Runtime Solution

Rust-FreeRTOS scheduler

WASM
interpreter

WASI

Secure Workload
(TA)

I/O ser.

Installation shim

Crypto

TLS migr

GP

Rich
world

HSSL tests – language independence works

Java

https://ww.chaspark.net/#/questions/790084197791088640?sub=790087690866180098
Huawei public competition

With Pyodide and 200%
overhead, python
dependencies can be
(live) attested and loaded
from host (driver)

https://webassembly.org/
https://arxiv.org/pdf/2206.08722.pdf
https://www.researchgate.net/profile/Valerio-Schiavoni/publication/350512786_Twine_An_Embedded_Trusted_Runtime_for_WebAssembly/links/60743fbaa6fdcc5f779d0c1a/Twine-An-Embedded-Trusted-Runtime-for-WebAssembly.pdf
https://dl.acm.org/doi/pdf/10.1145/3361525.3361541

Huawei Confidential20

RPC and SDK for Enclaves

Monitor / Harness
Shared mem

Linux Kernel

Workload
(CA)

runtime

Secure
Workload

(TA)

Enclave
Host

VM-based enclaves

Trusted Firmware

TEE OS

Linux Kernel

Workload
(CA)

Lib

Binary code

TA

Lib

Binary Code

TA
TZ-ASC

TrustZone

➢ In GP TEE, RPC is arranged via direct memory addressing from TA to CA, i.e. the APIs
for communication between host and TA is arranged by conveying pointers. This is not
only bad for CA security --- safe and unsafe memory references are in no way distinct
in GP TA SDKs *). This is a big risk for developers.

➢We propose PDU-based interaction as is used e.g. in Google Project Oak (Linux CC),
where CA-TA interaction is done via messaging. Different to Oak, we introduce a
language-agnostic, but routing aware lower RPC, complemented by a language-
specific but varying payload format.

*) Nokia, (Trust 2012): https://link.springer.com/chapter/10.1007/978-3-642-30921-2_1
**) Google Project Oak: https://github.com/project-oak/oak-enclave

Opaque RPC coded as CBOR PDUs, conveying payload +
routing and attestation information

. . . .

SDK / language –
specific RPC wrapping,
in many cases generation
automated

***) Enclave Host Interface (Aalto M.Sc 22): https://aaltodoc.aalto.fi/bitstream/handle/123456789/116438/master_Sinha_Anmol_2022.pdf?sequence=1

Code Development

➢With few exceptions, Host and TA applications come in pairs: Banking, eID, Video
player/DRM. Therefore, it is not conducive to program the pair in separation:

Anmol Singha
M.Sc. ***)

Program

Rust Source code

Critical
part

Mark
enclave
code

(function)

LLVM Compiler suite

AST
data-flow
analysis

Mark full extent
of enclave,
duplicate
templates and
functions where
needed

RPC &
Scaffolding

Separate enclave
code and auto-
generate RPC

Program

Critical
part

Program

Enclave

RPC

Host
linking

Enclave
linking

Linux Binary

Huawei Enclave
+ Runtime

https://link.springer.com/chapter/10.1007/978-3-642-30921-2_1
https://github.com/project-oak/oak-enclave

Huawei Confidential21

Where to Next?
– if trusted execution with enclaves materializes

Remaining Research Challenges

Huawei Confidential22

Computing going Heterogeneous (CPU→ Set of CPUs in a connected network)

Moore´s law allowed industry for 40 years to make ever faster, general-purpose CPUs. Now this is not possible any more, so we are
faced with architectures where many, special-purpose computers work together with the same memory (server), in the same
machine (car) or in the same context (home automation, personal-area network)

Bus

CPU xPU DSP
TEE TEE TEE

FPGA
sec

mem mem mem

Heterogeneous node

vPU
TEE

ECU
TEE

CPU
TEE

MPU
MPU

MPU
TEE

Heterogeneous machine

CPU
TEE

MPU
MPU

MPU
TEE

Heterogeneous use case

MPU
TEE

CPU
TEE

MPU
MPU

MPU
TEE

Heterogeneous network

CPU

TEE

In both consumer and cloud devices, these research directions represent a combination of platform isolation, attestation
and secure state-fulness with secure protocols, key sharing, or features like oblivious storage, multi-party computation and the
like

Impact of Heterogeneity to TEE use-cases:

1) Provisioning, key injection, code installation isolated execution, TEE security level assessment (attestation)

2) Multi-TEE: Many TEE working together to fulfill one use-case (e.g. CPU + NPU → secure AI models)

3) Mobile Code: TEE code (service) migrates between nodes for performance, backup, OR as a part of expected
behavior (different devices have different local state or accessible features)

Huawei Confidential23

Migration
Having a virtual ISA allows live migration of enclaves,
and live migration can also be used for secure local
storage

A complete handover between two devices with
different hardware and enclave setups, including
attesation (trust-root excluded) could be done in
<100 ms. For enclaves with 10000s bytes of state
and code, we were talking seconds.

This is a given use-case in cloud. In consumer, maybe
less business need for the moment.

Secure
boot

code

data

heap

Dynamic
state

ARM-TZ
Secure
boot

code

data

heap

Dynamic
state

X86-VM (VTx)

Trusted Channel

Trusted
Channel
‘with myself’

code

data

heap

Storage in
normal OS

15th European Workshop on Systems Security (22): https://dl.acm.org/doi/pdf/10.1145/3517208.3523755

Multi-TEE for eID – soon in submission

https://dl.acm.org/doi/pdf/10.1145/3517208.3523755

Huawei Confidential24

And hardware may still surprise us – In more than one way

2020 (APRR, PAE)

OS
Kernel

App 1 App 2 App 3

Indirection in MMU access control for
compartmentalizing memory at all levels,
including kernel

In-kernel compartments

Enc PPL 2 PPL 3

kernel

App 1 App 2 App 3

Full capability-hardware allows for easy
compartmentalization without privilege
levels and MMU

E.g. CompartOS *)

Cambridge CHERI / Morello

Comp1 Enc Comp3

*) https://arxiv.org/pdf/2206.02852.pdf

Although we can be quite confident that VM-based enclave technologies will allow consumer device architecture to make a leap in
how trusted execution is arranged, there might be more competent (and faster) hardware out there to run enclaves in isolation.

Also, these new chip isolation (and trust root) designs are still young, and will have unforeseen
shortcomings w.r.t. to security such as malfunction, side-channels etc. Can these be mitigated
in the field, e.g. by hardware reconfiguration? And if so, should not platform attestation include
self-healing / reconfigurable hardware state?

And will computing architecture overall change in consumer devices? What about in-memory
computing? Non-volatile system memory? Most enclave (isolation) solution rely on a dominant
CPU that manages all system state – is that even a realistic assumption?

Thank You!

