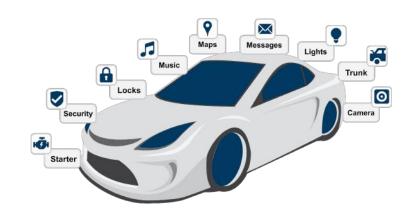


# A software-based approach to secure bare-metal devices

Bruno Crispo

Michele Grisafi, Marco Roveri, Mahmoud Ammar, Bart Jacobs, Danny Hughes.







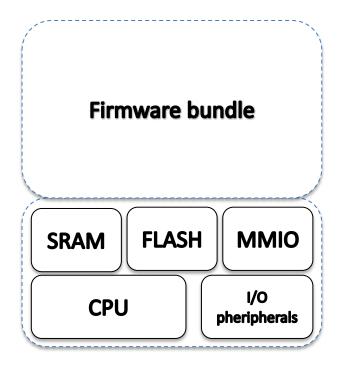



#### **Inter-Connected devices**












## **Motivations**

#### In this context a purely software solution is a necessity

**Bare-metal device** 



- No memory protection
  - No MMU
    - no ASLR, DEP, etc.
  - No MPU
- No hardcoded dual mode
- Typically few kB of Flash (~100 kB) and RAM (~10 kB)
- All AVR MCUs, some MSP430, some • **ARM Cortex-M**



# Trust model

#### SW supply-chain issues

## **Firmware bundle FLASH** MMIO **SRAM I/O** CPU pheripherals

#### **Bare-metal device**

- Developed (partially) by third-parties
- Rarely the open-source is available



# Adversarial model

- Software remote-only attacks.
  - Tampering with any unprotected memory area.
  - Eavesdropping on communication
  - Inject malicious logic in existing applications

• • • • •

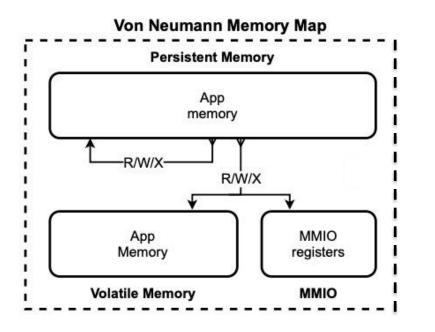
Availability and physical attacks are out of scope.

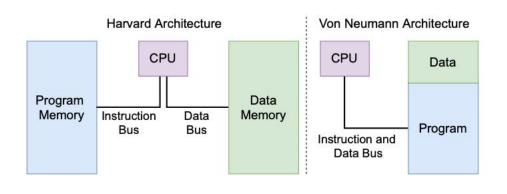


# PISTIS: SW-based Trusted Computing Architecture

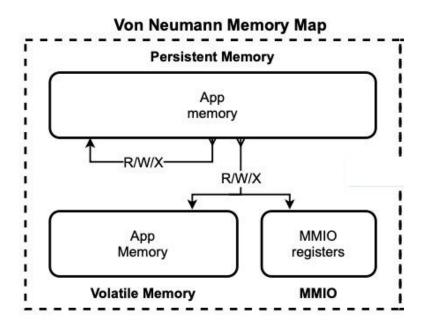
- Confidentiality and Integrity
- Memory isolation technique based on selective software virtualization and assembly-level code verification
- Formally verified that the design preserve memory isolation
- Implementation (code) verified to be memory-safe and crash-free




# Verified properties


- Memory-safety: SW is free from the following runtime errors:
  - Division by zero.
  - Integer overflow / underflow.
  - Buffer overflow / underflow.
  - Out-of-bounding array indexing.
  - Invalid pointer dereferences.
  - Illegal memory accesses.
  - Use after free.
  - Double free.
  - Problematic bit shifts.
  - Type conversions that would overflow the destination.
  - Memory leaks.

- Freedom from crashes: crash-free is guaranteed at two levels.
  - Absence of run-time errors ensures absence of crashes.
    - No segmentation faults (e.g. attempting to write read-only memory).
    - No exceptions (e.g. division by zero).
  - 2. Atomicity.
    - No failures through scheduled interrupts.




### State of the Art





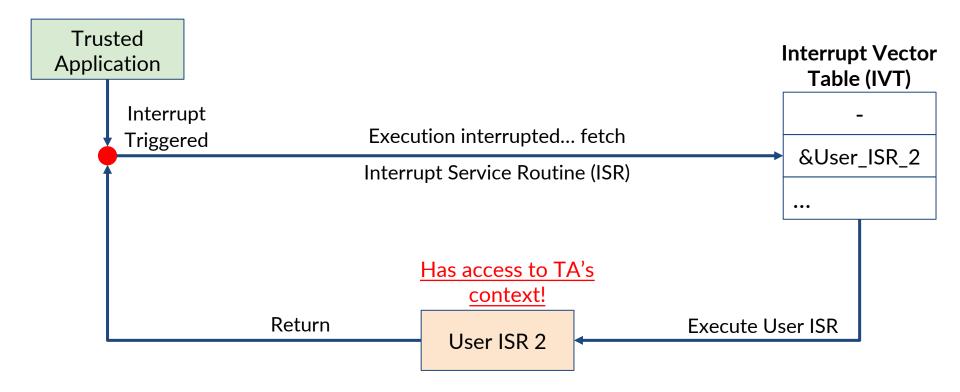






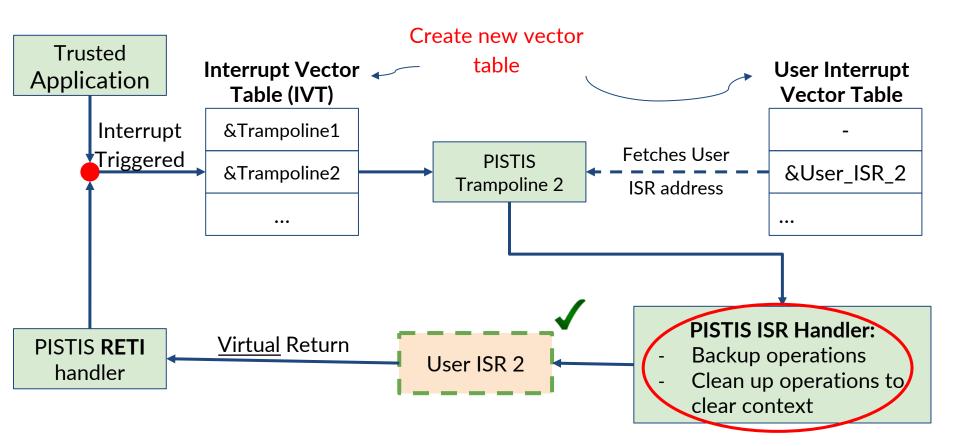
## Virtual instructions

CALL R10 //Dynamic call to an address in a register


. . .

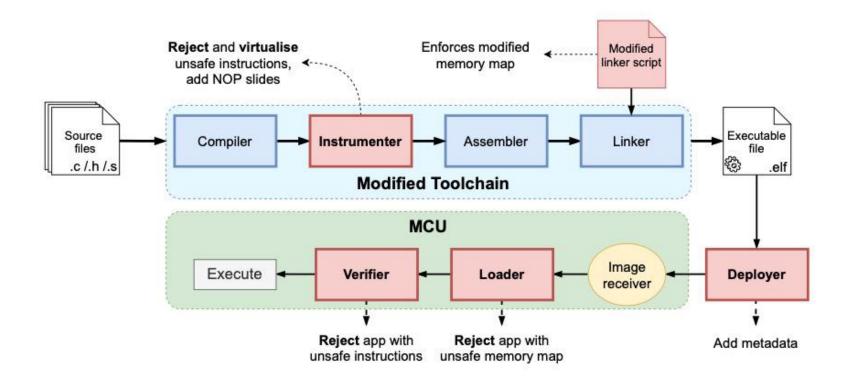
```
DINT // Disable interrupts to ensure atomicity
MOV R10, R6 // copy target address to R6
CALL #safe_call // Call to a TCM's safe virt. routine
```

```
safe_call:
CMP #topInstrMem, R6 // Check upper boundary
JHS .stopExecution // MCU reset if AP is violated
CMP #btmInstrMem, R6 // Check bottom boundary
JL .stopExecution // MCU reset if AP is violated
EINT //Enable interrupts after passing all checks.
BR R6 // Jump to original destination
```



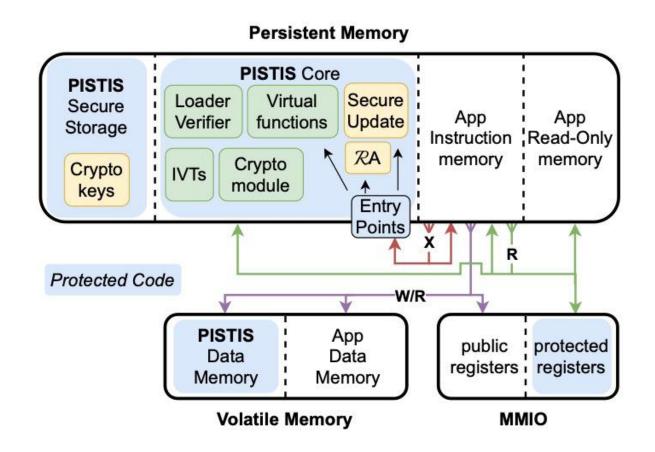

#### Interrupts






#### Interrupts






# (Untrusted) Toolchain





## PISTIS



Crypto: HCL\* library. Formally verified to be memory-safe, functionally-correct and secret-independent



## Evaluation

# ~500 LoC

Overheads of SµV-Enabled Binary Image Sizes

| Application  | Without<br>SμV | With $S\mu V$   |
|--------------|----------------|-----------------|
| Crypto       | 1414 B         | 1428 B (+0.99%) |
| Crypto ptr   | 1438 B         | 1458 B (+1.39%) |
| Sense temp   | 1012 B         | 1034 B (+2.17%) |
| Storage R/W  | 640 B          | 652 B (+1.88%)  |
| Avg overhead |                | 1.61%           |

#### Overheads of $S\mu V$ on the Execution Times of the Sample Applications

| Application   | Without<br>SµV | With<br>SµV | Relative<br>overhead |
|---------------|----------------|-------------|----------------------|
| Crypto        | 3.9460 ms      | 4.1695 ms   | 5.66%                |
| Crypto ptr    | 3.9469 ms      | 4.1706 ms   | 5.67%                |
| Sense temp    | 65.9048 ms     | 65.9364 ms  | 0.05%                |
| Storage Write | 859.6278 ms    | 859.6897 ms | 0.01%                |
| Storage Read  | 0.4382 ms      | 0.4468 ms   | 1.96%                |
| Avg overhead  |                |             | 2.67%                |

8-bit AVR ATmega 1284p MCU running at 10 MHz, with 16 KB of SRAM and 128 KB of flash. Modified Harward Arch.

~1300 LoC

| Ann         | Ε       | LF Binary                 | Mei    | mory Footprint            |
|-------------|---------|---------------------------|--------|---------------------------|
| Арр         | Orig.   | Mod.                      | Orig.  | Mod.                      |
| SerialMSP   | 3884 B  | 412 B ( <b>-89.39%</b> )  | 302 B  | 356 B (+17.88%)           |
| CopyDMA     | 5764 B  | 694 B ( <b>-87.96%</b> )  | 444 B  | 628 B (+41.44%)           |
| XorCypher   | 5940 B  | 532 B (-91.04%)           | 247 B  | 475 B (+92.31%)           |
| Bitcount    | 5664 B  | 1602 B (-71.72%)          | 3684 B | 5462 B ( <b>+48.26%</b> ) |
| SHA-256     | 9448 B  | 5518 B ( <b>-41.60%</b> ) | 1376 B | 1546 B (+12.35%)          |
| ML-acc      | 16616 B | 9512 B ( <b>-42.75%</b> ) | 6174 B | 9452 B ( <b>+53.09%</b> ) |
| PrimeFactor | 33200 B | 3650 B (-89.01%)          | 2192 B | 3286 B (+49.91%)          |
| 32bitMath   | 6036 B  | 822 B ( <b>-86.38%</b> )  | 522 B  | 766 B ( <b>+46.74%</b> )  |
| 16bitSwitch | 3940 B  | 182 B (-95.38%)           | 102 B  | 126 B (+23.53%)           |
| 8bitMatrix  | 4640 B  | 916 B ( <b>-80.26%</b> )  | 844 B  | 860 B (+1.90%)            |
| MatrixMul   | 4324 B  | 572 B (-86.77%)           | 500 B  | 516 B (+3.20%)            |
| firFilter   | 24912 B | 5486 B ( <b>-77.98%</b> ) | 3312 B | 5430 B (+63.95%)          |
| dhrystone   | 7840 B  | 2468 B (-68.52%)          | 1335 B | 2411 B (+80.60%)          |
| Average     |         | -77.60%                   |        | +41.17%                   |

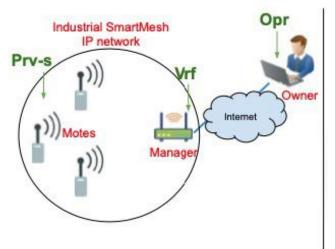
| Арр         | Normal Execution (Orig.) | PISTIS-enabled Execution (Mod.) |
|-------------|--------------------------|---------------------------------|
| SerialMSP   | 334.1976 ms              | 335.325 ms ( <b>+0.34</b> %)    |
| CopyDMA     | 118.4960 ms              | 238.656 ms (+101.40%)           |
| XorCypher   | 245.6500 ms              | 446.104 ms (+81.60%)            |
| Bitcount    | 5.7520 ms                | 5.786 ms ( <b>+0.59</b> %)      |
| SHA-256     | 49.1888 ms               | 89.046 ms (+81.03%)             |
| ML-acc      | 1456.9092 ms             | 3311.829 ms (+127.32%)          |
| PrimeFactor | 4.0810 ms                | 5.938 ms ( <b>+45.50%</b> )     |
| 32bitMath   | 0.9310 ms                | 1.294 ms (+38.99%)              |
| 16bitSwitch | 0.0050 ms                | 0.006 ms ( <b>+20.00</b> %)     |
| 8bitMatrix  | 0.5760 ms                | 0.577 ms ( <b>+0.17%</b> )      |
| MatrixMul   | 0.3430 ms                | 0.344 ms ( <b>+0.29</b> %)      |
| firFilter   | 1093.5059 ms             | 2359.619 ms (+115.78%)          |
| dhrystone   | 102.9200 ms              | 177.336 ms ( <b>+72.30</b> %)   |
| Average     |                          | +52.72%                         |

MSP430 MCU, which features  ${\sim}132$  kB of FLASH,  ${\sim}8kB$  of SRAM, and up to an 8 MHz of CPU

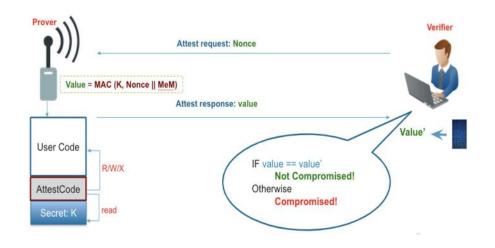


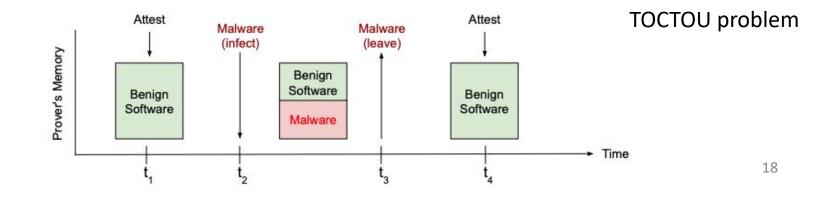
# **Trusted Applications**

- Secure Update
- Shadow stack and CFI
- Verify & Revive



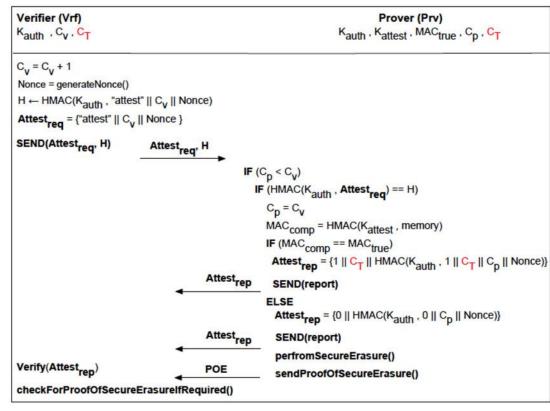

# Verify & Revive


- Composed of
  - RA that mitigate TOCTOU
  - Secure Erasure
  - Remote secure code update for healing

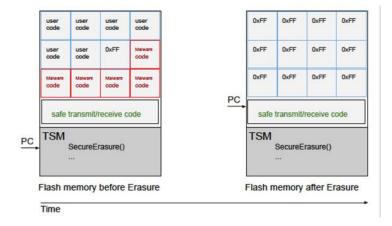



## Verify & Revive



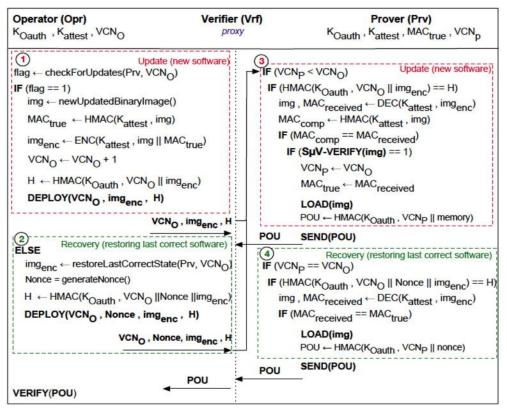

(A) A possible scenario of industrial network



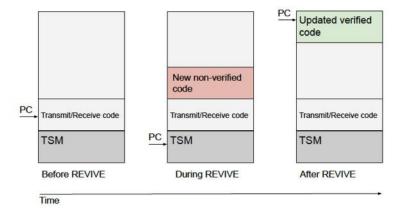





# VERIFY



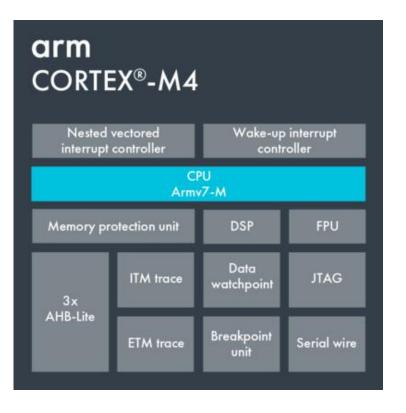

| Kauth             | A secret key shared with Vrf for authentication.                                |
|-------------------|---------------------------------------------------------------------------------|
| Kattest           | A secret key used for attestation, i.e. computing MAC over entire memory.       |
| Cp                | A counter used to avoid replay attacks.                                         |
| C <sub>T</sub>    | A counter used to detect TOCTOU attack.                                         |
| MACtrue           | A digest computed over a benign state of Prv's memory, using $K_{attest}$ .     |
| Koauth            | A secret key shared with Opr for authentication.                                |
| VCNP              | A Version Control Number of current Prv 's software, shared with Opr.           |
| Vrf para          | meters                                                                          |
| K <sub>auth</sub> | A secret key shared with Prv for authentication.                                |
| $C_v$             | A counter used to avoid replay attacks, initialized with same value like Cp.    |
| $C_T$             | A counter used to detect TOCTOU attack, initialized with same value as Prv's C7 |






## REVIVE




| Kauth             | A secret key shared with Vrf for authentication.                                 |
|-------------------|----------------------------------------------------------------------------------|
| Kattest           | A secret key used for attestation, i.e. computing MAC over entire memory.        |
| Cp                | A counter used to avoid replay attacks.                                          |
| Cp<br>CT          | A counter used to detect TOCTOU attack.                                          |
| MACtrue           | A digest computed over a benign state of Prv's memory, using Kattest.            |
| Koauth            | A secret key shared with Opr for authentication.                                 |
| VCNP              | A Version Control Number of current Prv 's software, shared with Opr.            |
| Vrf para          | meters                                                                           |
| K <sub>auth</sub> | A secret key shared with Prv for authentication.                                 |
| $C_v$             | A counter used to avoid replay attacks, initialized with same value like $C_p$ . |
| $C_T$             | A counter used to detect TOCTOU attack, initialized with same value as Prv's C7  |





# Considerations

#### Hardware must be trusted



Not always clear for what though

A vulnerability/error in HW can be very costly

• i.e., Xilinx 7-s [Usenix Sec 20]

#### Do it right is getting difficult

• i.e., Intel MPX

Alternatively, HW can be reconfigured/fixed but at the price of loosing some trust

Interoperability issues

# Conclusions



- New foundational TAs besided the existing ones
- Now a good time also to re-think about trusted computing architectures. RISC V is an opportunity
- We didn't touch side-channels attacks



#### References

M. Salehi, L. Degani, M. Roveri, D. Hughes, B. Crispo, Discovery and Identification of Memory Corruption Vulnerabilities on Bare-Metal Embedded Devices. IEEE Trans. Dependable and Secure Computing (2023)

M. Grisafi, M. Ammar, M. Roveri, B. Crispo, PISTIS: Trusted Computing Architecture for Low-end Embedded Systems. USENIX Security Symposium (2022)

M. Salehi, G. De Borger, D. Hughes, B. Crispo, NemesisGuard: Mitigating interrupt latency side channel attacks with static binary rewriting. Computer Networks (2022)

M. Grisafi, M. Ammar, K. Sinan Yildirim, B. Crispo, MPI: Memory Protection for Intermittent Computing. IEEE Trans. on Information Forensics and Security (2022)

M. Ammar, B. Crispo, Verify&Revive: Secure Detection and Recovery of Compromised Low-end Embedded Devices. Annual Computer Security Applications Conference (ACSAC 2020)

M. Ammar, B. Crispo, G. Tsudik, SIMPLE: A Remote Attestation Approach for Resourceconstrained IoT devices. ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2020)

M. Salehi, D. Hughes, B.Crispo, µSBS: Static Binary Sanitization of Bare-metal Embedded Devices for Fault Observability. International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020)

M. Ammar, B. Crispo, B. Jacobs, D. Hughes, W. Daniels, SuV - The Security MicroVisor: A Formallyverified Software-based Security Architecture for the Internet of Things. IEEE Trans. Dependable and Secure Computing (2019) 23