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Inter-Connected devices
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Motivations

In this context a purely software solution is a necessity
Bare-metal device

• No memory protection
• No MMU   

• no ASLR, DEP, etc.
• No MPU

• No hardcoded dual mode
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• Typically few kB of Flash (˜100 kB) and 
RAM (˜10 kB)

• All AVR MCUs, some MSP430, some 
ARM Cortex-M



Trust model

SW supply-chain issues

Bare-metal device

• Developed (partially) by  
third-parties

• Rarely the open-source is 
available
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Adversarial model

§ Software remote-only attacks.
§ Tampering with any unprotected memory area.

§ Eavesdropping on communication
§ Inject malicious logic in existing applications

§ ….

§ Availability and physical attacks are out of scope.
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PISTIS: SW-based Trusted Computing 
Architecture

• Confidentiality and Integrity

• Memory isolation technique based on selective 
software virtualization and assembly-level code 
verification

• Formally verified that the design preserve memory 
isolation

• Implementation (code) verified to be memory-safe 
and crash-free
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• Memory-safety: SW is free from the
following runtime errors:
• Division by zero.
• Integer overflow / underflow.
• Buffer overflow / underflow.
• Out-of-bounding array indexing.
• Invalid pointer dereferences.
• Illegal memory accesses.
• Use after free.
• Double free.
• Problematic bit shifts.
• Type conversions that would overflow

the destination.
• Memory leaks.

• Freedom from crashes: crash-free is

guaranteed at two levels.

1. Absence of run-time errors ensures 

absence of crashes.

• No segmentation faults (e.g. 

attempting to write read-only 

memory).

• No exceptions (e.g. division by zero).

2. Atomicity.

• No failures through scheduled 

interrupts. 
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Verified properties
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State of the Art
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Virtual instructions
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Interrupts
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Interrupts
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(Untrusted) Toolchain
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PISTIS
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Crypto: HCL* library.  Formally verified to be memory-safe, functionally-correct and secret-independent



Evaluation
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8-bit AVR ATmega 1284p  MCU running at 10 MHz, 
with 16 KB of SRAM and 128 KB of flash. Modified 
Harward Arch.

MSP430 MCU, which features ∼132 kB of FLASH, ∼8kB of SRAM, and up to an 8 
MHz of CPU 

~500 LoC

~1300 LoC



Trusted Applications

• Secure Update 
• Shadow stack and CFI
• Verify & Revive
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Verify & Revive

• Composed of
• RA that mitigate TOCTOU
• Secure Erasure
• Remote secure code update for healing
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Verify & Revive
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TOCTOU problem
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VERIFY
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REVIVE



Considerations 

Not always clear for what though

A vulnerability/error in HW can be very 
costly

• i.e., Xilinx 7-s [Usenix Sec 20]

Do it right is getting difficult
• i.e., Intel MPX

Alternatively, HW can be 
reconfigured/fixed but at the price of 
loosing some trust

Interoperability issues
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Hardware must be trusted



Conclusions

§ New foundational TAs besided the existing ones

§ Now a good time also to re-think about trusted 

computing architectures. RISC V is an opportunity

§ We didn’t touch side-channels attacks

22



References
M. Salehi, L. Degani, M. Roveri, D. Hughes, B. Crispo, Discovery and Identification of Memory
Corruption Vulnerabilities on Bare-Metal Embedded Devices. IEEE Trans. Dependable and Secure
Computing (2023)
M. Grisafi, M. Ammar, M. Roveri, B. Crispo, PISTIS: Trusted Computing Architecture for Low-end
Embedded Systems. USENIX Security Symposium (2022)
M. Salehi, G. De Borger, D. Hughes, B. Crispo, NemesisGuard: Mitigating interrupt latency side
channel attacks with static binary rewriting. Computer Networks (2022)
M. Grisafi, M. Ammar, K. Sinan Yildirim, B. Crispo, MPI: Memory Protection for Intermittent
Computing. IEEE Trans. on Information Forensics and Security (2022)
M. Ammar, B. Crispo, Verify&Revive: Secure Detection and Recovery of Compromised Low-end 
Embedded Devices. Annual Computer Security Applications Conference (ACSAC 2020)
M. Ammar, B. Crispo, G. Tsudik, SIMPLE: A Remote Attestation Approach for Resource-
constrained IoT devices. ACM/IEEE International Conference on Cyber-Physical Systems 
(ICCPS 2020)
M. Salehi, D. Hughes, B.Crispo, μSBS: Static Binary Sanitization of Bare-metal Embedded Devices 
for Fault Observability. International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020)
M. Ammar, B. Crispo, B. Jacobs, D. Hughes, W. Daniels, SμV - The Security MicroVisor: A Formally-
verified Software-based Security Architecture for the Internet of Things. IEEE Trans. Dependable
and Secure Computing (2019) 23


