
A software-based approach to
secure bare-metal devices

1

Michele Grisafi, Marco Roveri, Mahmoud Ammar, Bart Jacobs, Danny Hughes.

Bruno Crispo

Inter-Connected devices

2

Motivations

In this context a purely software solution is a necessity
Bare-metal device

• No memory protection
• No MMU

• no ASLR, DEP, etc.
• No MPU

• No hardcoded dual mode

3

• Typically few kB of Flash (˜100 kB) and
RAM (˜10 kB)

• All AVR MCUs, some MSP430, some
ARM Cortex-M

Trust model

SW supply-chain issues

Bare-metal device

• Developed (partially) by
third-parties

• Rarely the open-source is
available

4

Adversarial model

§ Software remote-only attacks.
§ Tampering with any unprotected memory area.

§ Eavesdropping on communication
§ Inject malicious logic in existing applications

§ ….

§ Availability and physical attacks are out of scope.

5

PISTIS: SW-based Trusted Computing
Architecture

• Confidentiality and Integrity

• Memory isolation technique based on selective
software virtualization and assembly-level code
verification

• Formally verified that the design preserve memory
isolation

• Implementation (code) verified to be memory-safe
and crash-free

6

• Memory-safety: SW is free from the
following runtime errors:
• Division by zero.
• Integer overflow / underflow.
• Buffer overflow / underflow.
• Out-of-bounding array indexing.
• Invalid pointer dereferences.
• Illegal memory accesses.
• Use after free.
• Double free.
• Problematic bit shifts.
• Type conversions that would overflow

the destination.
• Memory leaks.

• Freedom from crashes: crash-free is

guaranteed at two levels.

1. Absence of run-time errors ensures

absence of crashes.

• No segmentation faults (e.g.

attempting to write read-only

memory).

• No exceptions (e.g. division by zero).

2. Atomicity.

• No failures through scheduled

interrupts.

7

Verified properties

8

State of the Art

9

Virtual instructions

10

Interrupts

11

User ISR 2

-

&User_ISR_2

…

Interrupt Vector
Table (IVT)

Interrupt
Triggered

Return

Trusted
Application

Execution interrupted… fetch

Interrupt Service Routine (ISR)

Execute User ISR

Has access to TA’s
context!

Interrupts

12

User ISR 2
PISTIS ISR Handler:

- Backup operations
- Clean up operations to

clear context

&Trampoline1

&Trampoline2

…

-

&User_ISR_2

…

PISTIS
Trampoline 2

Interrupt Vector
Table (IVT)

User Interrupt
Vector Table

PISTIS RETI
handler

Fetches User

ISR address

Virtual Return

Trusted
Application

Interrupt
Triggered

Create new vector
table

(Untrusted) Toolchain

13

PISTIS

14

Crypto: HCL* library. Formally verified to be memory-safe, functionally-correct and secret-independent

Evaluation

15

8-bit AVR ATmega 1284p MCU running at 10 MHz,
with 16 KB of SRAM and 128 KB of flash. Modified
Harward Arch.

MSP430 MCU, which features ∼132 kB of FLASH, ∼8kB of SRAM, and up to an 8
MHz of CPU

~500 LoC

~1300 LoC

Trusted Applications

• Secure Update
• Shadow stack and CFI
• Verify & Revive

16

Verify & Revive

• Composed of
• RA that mitigate TOCTOU
• Secure Erasure
• Remote secure code update for healing

17

Verify & Revive

18

TOCTOU problem

19

VERIFY

20

REVIVE

Considerations

Not always clear for what though

A vulnerability/error in HW can be very
costly

• i.e., Xilinx 7-s [Usenix Sec 20]

Do it right is getting difficult
• i.e., Intel MPX

Alternatively, HW can be
reconfigured/fixed but at the price of
loosing some trust

Interoperability issues

21

Hardware must be trusted

Conclusions

§ New foundational TAs besided the existing ones

§ Now a good time also to re-think about trusted

computing architectures. RISC V is an opportunity

§ We didn’t touch side-channels attacks

22

References
M. Salehi, L. Degani, M. Roveri, D. Hughes, B. Crispo, Discovery and Identification of Memory
Corruption Vulnerabilities on Bare-Metal Embedded Devices. IEEE Trans. Dependable and Secure
Computing (2023)
M. Grisafi, M. Ammar, M. Roveri, B. Crispo, PISTIS: Trusted Computing Architecture for Low-end
Embedded Systems. USENIX Security Symposium (2022)
M. Salehi, G. De Borger, D. Hughes, B. Crispo, NemesisGuard: Mitigating interrupt latency side
channel attacks with static binary rewriting. Computer Networks (2022)
M. Grisafi, M. Ammar, K. Sinan Yildirim, B. Crispo, MPI: Memory Protection for Intermittent
Computing. IEEE Trans. on Information Forensics and Security (2022)
M. Ammar, B. Crispo, Verify&Revive: Secure Detection and Recovery of Compromised Low-end
Embedded Devices. Annual Computer Security Applications Conference (ACSAC 2020)
M. Ammar, B. Crispo, G. Tsudik, SIMPLE: A Remote Attestation Approach for Resource-
constrained IoT devices. ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS 2020)
M. Salehi, D. Hughes, B.Crispo, μSBS: Static Binary Sanitization of Bare-metal Embedded Devices
for Fault Observability. International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020)
M. Ammar, B. Crispo, B. Jacobs, D. Hughes, W. Daniels, SμV - The Security MicroVisor: A Formally-
verified Software-based Security Architecture for the Internet of Things. IEEE Trans. Dependable
and Secure Computing (2019) 23

